การผสานคุณค่าของระบบนิเวศและความหลากหลายทางชีวภาพในระบบข้าวของประเทศไทย

การวัดค่าที่สำคัญในระบบข้าว: การสังเคราะห์ผลและข้อเสนอแนะ

สิ่งห้าม 2565 – ฉบับสมบูรณ์

จัดทำโดย:
คณะเศรษฐศาสตร์ มหาวิทยาลัยขอนแก่น

การศึกษานี้เป็นส่วนหนึ่งของ UNEP TEEBAgriFood Initiative ซึ่งได้รับสนับสนุนจาก International Climate Initiative (IKI)

กระทรวงสิ่งแวดล้อม การอนุรักษ์ธรรมชาติ และความปลอดภัยแห่งสหพันธ์สาธารณรัฐเยอรมนี (BMU) สนับสนุนการเริ่มมันน์บนพื้นฐานของการตัดสินใจโดยสภาผู้แทนราษฎรแห่งสหพันธ์สาธารณรัฐเยอรมนี (German Bundestag)
สารบัญ
ค่าน้ำ.. iv
ค่าน้ำ... v
1. บทนำ: กระบวนการที่ผ่านในการประเมิน TEEBAgriFood.. 8
2. การประยุกต์ใช้กระบวนการที่ผ่านในการประเมิน TEEBAgriFood กับบริบทข้าวไทย.......................... 9
3. การวิเคราะห์แบบจำลองสถานการณ์ .. 13
 3.1 การพัฒนามาตรแบบจำลองสถานการณ์ .. 13
 สถานการณ์จำลองที่ 1: การทำธุรกิจตามปกติ (BAU).. 14
 สถานการณ์จำลองที่ 2: การส่งเสริมโครงการข้าวอินทรีย์เพิ่มมากขึ้น............. 15
 สถานการณ์จำลองที่ 3: การส่งเสริมข้าวอินทรีย์เพิ่มมากขึ้น...................... 16
 สถานการณ์จำลองที่ 4: การเปลี่ยนแปลงสุขภาพเป้าหมาย............................. 16
4. สรุปการเปลี่ยนแปลงที่เกิดขึ้นและจำลองแบบ .. 18
 4.1 การเปลี่ยนแปลงของการผลิตข้าวและรายได้ .. 19
 4.2 ผลกระทบภายนอกด้านสิ่งแวดล้อม – การเปลี่ยนแปลงของคลังทุนธรรมชาติ.......... 20
 ความหลากหลายทางชีวภาพของแหล่ง... 21
 การปล่อยก๊าซเรือนกระจก .. 21
 4.3 ผลกระทบภายนอกด้านสุขภาพ – การเปลี่ยนแปลงในทุนมนุษย์........................ 23
 4.4 ผลกระทบภายนอกทางสังคม – การเปลี่ยนแปลงของทุนทางสังคม.................. 24
 4.5 อื่น ๆ - รายจ่ายของรัฐบาล .. 24
5. การประเมินค่าและการวิเคราะห์สถานการณ์จำลอง.. 25
 5.1 ผลการวิเคราะห์สถานการณ์จำลอง .. 27
 มูลค่าโดยรวม: ผลกระทบของการขยายการผลิตข้าวอินทรีย์.......................... 28
 มูลค่าในมิติการผลิต: รายได้และต้นทุนการผลิตข้าว 30
 มูลค่าในมิติฐานสุขภาพ: ผลกระทบภายนอกด้านสุขภาพของมนุษย์................... 32
 มูลค่าในมิติฐานสิ่งแวดล้อม: การลดการปล่อยก๊าซเรือนกระจก.................. 33
 การสังเคราะห์.. 36
6. บทสรุป / ข้อความสำคัญ ... 39
7. การอภิปรายนโยบายและข้อเสนอแนะ .. 43
ตารางที่
รูปที่
สารบัญภาพ

สารบัญภาพ
ค่าม่า

การเกษตรมีความสำคัญต่อการสร้างความมั่นคงทางอาหารและการขับเคลื่อนเศรษฐกิจของประเทศไทย โดยเฉพาะข้าวที่เป็นหนึ่งในผลิตภัณฑ์การเกษตรที่สำคัญของประเทศ ทั้งนี้ ระบบการผลิตอาหารเป็นกิจกรรมที่ต้องพึ่งพาทรัพยากรธรรมชาติโดยสารสมบัติการผลิตต่อสิ่งแวดล้อมและความหลากหลายทางชีวภาพได้ ดังนั้นการเกษตรที่คำนึงถึงการอนุรักษ์ความหลากหลายทางชีวภาพและระบบนิเวศจะช่วยลดความเสี่ยงที่อาจเกิดขึ้นต่อระบบการผลิตอาหารในอนาคตได้ ดังนั้นจึงเป็นต้องให้ความสำคัญกับการเปลี่ยนแปลงไปสู่ระบบการผลิตอาหารที่ยั่งยืน การปลูกข้าวอินทรีย์เป็นรูปแบบหนึ่งของการผลิตข้าวอย่างยั่งยืนที่สนับสนุนการคุ้มครองความหลากหลายทางชีวภาพและระบบนิเวศ อย่างไรก็ตาม ข้อจำกัดและกฎเกณฑ์ต่าง ๆ ในการผลิตข้าวอินทรีย์เป็นความท้าทายที่ทำให้เกษตรกรต้องคำนึงถึงความคุ้มค่าของการบริโภคและนโยบายการผลิตข้าวอินทรีย์ ผลการศึกษาโครงการนี้เป็นหลักฐานเชิงประจักษ์ที่นำเสนอการรุกตามการอนุรักษ์ของระบบนิเวศและความหลากหลายทางชีวภาพในระบบผลิตข้าวของประเทศไทยที่มีโทษให้เห็นถึงสัดส่วนและผลประโยชน์ต่าง ๆ ของการผลิตข้าวอินทรีย์และข้อเสนอแนะเชิงนโยบายในการจัดการพื้นที่ปลูกข้าวอย่างยั่งยืนในระยะยาวเพื่อผลักดันไปสู่การปฏิบัติอย่างเป็นรูปธรรมผ่านการสนับสนุนของรัฐทั้งด้านโลgistิกการผลิต การสร้างแรงจูงใจและการสนับสนุนเทคโนโลยีต่าง ๆ และยังนำเสนอข้อมูลเพื่อเป็นทางเลือกในการประกอบการตัดสินใจให้กับเกษตรกรผู้ปลูกข้าวอีกด้วย การผลิตข้าวและการเกษตรที่ยั่งยืนจะเป็นหนึ่งในการบรรลุเป้าหมายการพัฒนาที่ยั่งยืน ตลอดจนสนับสนุนการดำเนินงานของอนุสัญญาว่าด้วยความหลากหลายทางชีวภาพและการอนุรักษ์สิ่งมีชีวิตทางธรรมชาติว่าด้วยการเปลี่ยนแปลงสภาพภูมิอากาศ

ดร. พิรุณ สัยยะสิทธิพานิช
เลขาธิการสานักงานนโยบายและแผนทรัพยากรธรรมชาติและสิ่งแวดล้อม
อนาคตและสุขภาพของคนบนโลกนี้ในปัจจุบัน และทุกคนที่จะเกิดมาในโลกนี้ในอนาคต ไม่ว่าจะอยู่ในวัฒนธรรมหรือสภาพภูมิอากาศแบบใด ล้วนทันทีถูกทุกข์ทรมานและทำงานหนักเกินขีดจำกัดของความยั่งยืนและทำให้ระบบนิเวศเสื่อมโทรม เราทำให้ระบบอาหารของเราเสื่อมลายในความเสี่ยงมากยิ่งขึ้น – ในโลกนี้ที่ความทวีทักษะและการระทุกโภชนาการยังคงขยายตัวอย่างต่อเนื่อง

ระบบเกษตรและการอาหารทั่วโลกเป็นหัวขับเคลื่อนพบคุณค่า 3 ด้าน ทั้งด้านผลผลิต การดูแลความหลากหลายทางชีวภาพ และการเปลี่ยนแปลงสภาพภูมิอากาศ ถึงเราใช้น้ำมันเชื้อเพลิง อาจมีผล และปัญหาในภูมิภาคและภูมิศาสตร์ที่มีผลต่อการเกษตร ยังเป็นการท้าทายที่คลาดเคลื่อนทางชีวภาพมากขึ้น แต่สิ่งเหล่านี้กำลังเสื่อมสลายต่อระบบอาหาร สุขภาพ การดำรงชีวิต เศรษฐกิจ และการบริหารการพัฒนาที่ยั่งยืน ค.ศ. 2030 ดังนั้นการลงทุนเพื่อเพิ่มผลผลิต ซึ่งจะนั่งในสิ่งจำเป็นสําหรับการสร้างความยั่งยืนแบบที่จะนำไปสู่การมีระบบอาหารที่ยั่งยืน ธรรมชาติให้ประโยชน์หลายประการที่เอื้อต่อเศรษฐกิจและความเป็นอยู่ของเรา เช่น การผลิตผลพันธุ์พืชและสร้างแหล่งน้ำที่เป็นพื้นฐานของการผลิตอาหาร มีหลักฐานเพียงพอที่จะเห็นว่าการจ้างระบบเกษตรที่เป็นมิตรกับธรรมชาติจะไม่เพียงเพิ่มความสามารถของธรรมชาติในการให้ประโยชน์ที่มีคุณค่าและเพิ่มสิ่งแวดล้อมในระยะยาว ถ้าเรามีการตัดสินใจอย่างถูกต้อง การขนส่ง และจัดการอาหาร ผลประโยชน์เหล่านี้ได้ถูกลดลงโดยสิ้นเชิงอยู่ในหลายกรมหรือไม่ได้ถูกนำมาในการวิเคราะห์ทางการเงินที่สูงสุดแล้วการตัดสินใจและทางเลือกที่หลากหลายเหล่านี้ไม่ได้นำไปสู่ความเสี่ยงในระยะยาวของธรรมชาติของธรรมชาติ UNEP ที่มี씀ในเรื่องนี้ตั้งแต่ พ.ศ. 2551 เพื่อให้เกิดความสัมพันธ์ของประโยชน์เหล่านี้ที่ดีที่สุด การให้คุณค่าและถูกถือในการกำหนดนโยบายอย่างครบถ้วนผ่านโครงการจัดการเริ่มต้นกับเศรษฐศาสตร์ระบบธรรมชาติและความหลากหลายทางชีวภาพ (Economics of Ecosystems and Biodiversity: TEEB)

รายงานนี้เป็นผลจากการประเมินนโยบายของ TEEB ในประเทศไทย ซึ่งได้รับการสนับสนุนจาก IKI เป็นการร่วมกับการจัดการฟื้นฟูที่ยั่งยืน และการพัฒนาในภาคตะวันออกเฉียงเหนือของประเทศไทย เที่ยวเข้ากับการจัดการและพัฒนาเศรษฐกิจ อุตสาหกรรมทางเศรษฐกิจ สภาพการผลิตผลประโยชน์ของโลกและผลกระทบที่เกิดขึ้น การจัดการและพัฒนาเศรษฐกิจ ที่มีส่วนในการจัดการและแผนทรัพยากรธรรมชาติและสิ่งแวดล้อมเป็นปรัชญา โดย UNEP ทำหน้าที่เป็นผู้สนับสนุนชี้วิธีการแก้ไขปัญหาจากการวิเคราะห์ผลประโยชน์ของหลายแหล่งในประเทศไทย ภายใต้การนำของคณะเศรษฐศาสตร์ มหาวิทยาลัยขอนแก่น
มิติที่สำคัญประการหนึ่งที่มีการสำรวจคือการเปลี่ยนแปลงระดับผลผลิต ระหว่างการผลิตข้าวแบบดั้งเดิมกับการเปลี่ยนจากการผลิตแบบดั้งเดิมเป็นการผลิตแบบอินทรีย์ ซึ่งมีความสำคัญเป็นอย่างยิ่งในปัจจุบันเมื่อพิจารณาถึงภาวะราคาอาหารที่สูงสุดในทั่วโลกและแนวโน้ยที่เกิดขึ้นทั่วโลกที่มีวัตถุประสงค์อย่างยิ่งที่ไม่ต้องการผลผลิตที่สามารถผลิตได้ในปัจจุบันเนื่องจากการผลิตแบบดั้งเดิมเป็นการผลิตแบบอินทรีย์ที่มีมูลค่าเป็นตัวเงิน ตัวอย่างเช่น ดัชนีความหลากหลายทางชีวภาพที่เพิ่มขึ้นเกินกว่าสามเท่า (ซึ่งใช้วัดความหลากหลายและปริมาณของแมลง) จากการเปลี่ยนแปลงเกษตรอินทรีย์

ผลการศึกษาพบว่า การสูญเสียเพียงเล็กน้อยเหล่านี้ที่ไม่ได้เลยกับผลประโยชน์จะได้รับจากการเปลี่ยนแปลงแบบอินทรีย์ โดยการแปลงข้าว 90% ให้เป็นการปลูกแบบอินทรีย์จะสามารถสร้างผลประโยชน์ได้มากถึง 3,800 ล้านดอลลาร์ภายในปี พ.ศ. 2578 นอกจากนี้ยังมีผลประโยชน์อื่นมากมายที่ไม่ได้มีมูลค่าเป็นตัวเงิน ตัวอย่างเช่น ดัชนีความหลากหลายทางชีวภาพที่เพิ่มขึ้นเกินกว่าสามเท่า (ซึ่งใช้วัดความหลากหลายและปริมาณของแมลง) จากการเปลี่ยนแปลงเกษตรอินทรีย์

UNEP และพันธมิตรได้แสดงให้เห็นว่าการเปลี่ยนจากการผลิตข้าวแบบดั้งเดิมเป็นการผลิตข้าวแบบอินทรีย์ในภาคตะวันออกเฉียงเหนือของประเทศไทยนั้นเหมาะสมตามทั้งเศรษฐกิจและทางนวัตกรรม รายงานนี้เป็นกรณีศึกษาทางด้านเศรษฐกิจสำหรับการผลิตอาหารที่มีผลเชิงบวกต่อธรรมชาติในภาคตะวันออกที่มีแนวโน้มจะนำไปสู่การเปลี่ยนแปลงเกษตรอินทรีย์ในภาคตะวันออกเฉียงเหนือของโลก ด้วยการวัดค่าและให้คุณค่าทางเศรษฐกิจกับผลประโยชน์ที่ “มองไม่เห็น”

การประชุมสุดยอดผู้นำระดับนานาชาติในปี 2564 ได้เปิดการอภิปรายร่วมกันถึงแนวทางที่จะนำไปสู่การเปลี่ยนแปลงที่สำคัญของการจัดการระบบอาหารในระดับชาติ จากการที่โดยการ UNEP มุ่งหวังที่จะเป็นผู้นำในเรื่องการนำทางการเปลี่ยนแปลงที่สำคัญด้านเกษตรที่เป็นมิตรกับธรรมชาติเพื่อการเปลี่ยนแปลงระบบอาหารอย่างยั่งยืน – สำหรับผู้คนและโลกใหม่นี้

ชูชาน การ์ดเนอร์

ผู้อำนวยการฝ่ายระบบนิเวศ
โครงการสิ่งแวดล้อมแห่งสหประชาชาติ
กล่องข้อความที่ 1: TEEBaGriFood Thailand:
การผสมผสานคุณค่าของระบบนิเวศและความหลากหลายทางชีวภาพในระบบข้าว

TEEBaGriFood เป็นการเริ่มโครงการสิ่งแวดล้อมแห่งสหประชาชาติ (UN Environmental Programme: UNEP) ซึ่งพยายามแสดงให้เห็นถึงการพึ่งพาและผลกระทบของห่วงโซ่มูลค่าของการเกษตรและอาหารที่มีต่อระบบนิเวศ ผลกระทบ และข้อกังวลที่สำคัญเหล่านี้มีการนำไปปรับปรุงการดำเนินงานในทุกระดับรูปแบบของเศรษฐกิจ และกักพุ่งอยู่ในระบบสิ่งแวดล้อม การกระบวนการตัดสินใจ ที่นี่ ประเทศไทยได้ร่วมกับประเทศในภูมิภาคเอเชียแปซิฟิกในโครงการนี้ เน้นไปที่การเพิ่มข้อตกลงสำคัญของนโยบายการเกษตรที่มีผลต่อสิ่งแวดล้อมและระบบเกษตร และสหกรณ์

วัตถุประสงค์: TEEBaGriFood Thailand มีวัตถุประสงค์ในการแจ้งให้ทราบถึงกระบวนการวางแผนด้านการเกษตรและอาหารในประเทศไทย โดยให้สิ่งแวดล้อมร่วมตัวในการตัดสินใจด้านการเกษตรและอาหาร มีการเข้าใจวิธีการทำงานดังกล่าวในความสำคัญของนโยบายการเกษตรที่มีอิทธิพลต่อระบบนิเวศเกษตรและสังคม

วิธีดำเนินการ: การวิเคราะห์ TEEBaGriFood ในประเทศไทยใช้วิธีการสร้างแบบจำลองสถานการณ์ เพื่อศึกษาผลกระทบที่จะเกิดขึ้นในอนาคต จากการเปลี่ยนแปลงการใช้ที่ดินอันเป็นผลมาจากการขยายตัวของการปลูกข้าวอินทรีย์ในภาคตะวันออกเฉียงเหนือของประเทศไทย ซึ่งมีข้าวเป็นพืชหลัก

ผลผลิตที่คาดว่าจะได้รับ: ผู้กำหนดนโยบายจะมีความพร้อมในการรับรู้ การวัดผล และเก็บข้อมูลคุณค่าของความหลากหลายทางชีวภาพและความหลากหลายทางวัฒนธรรมสำหรับนักท่องเที่ยวที่มาเยี่ยมชมระบบการเกษตรที่มีคุณค่าที่แท้จริงของระบบการผลิตที่มีคุณค่าทางสิ่งแวดล้อมและด้านเศรษฐกิจในอนาคต

ดูรายละเอียดเพิ่มเติมได้ที่: http://teebweb.org/our-work/agrifood/
1. บทนำ: กรอบการทำงานในการประเมิน TEEBAgriFood

การเปลี่ยนแปลงในระบบอาหารเป็นสิ่งจำเป็นต่อการบรรลุเป้าหมายการพัฒนาที่ยั่งยืนตามข้อตกลงไว้ในระดับสากล โครงการเริ่ม TEEBAgriFood ได้รับการพัฒนาโดยโครงการสีเขียวแห่งสหประชาชาติ (the UN Environment Programme) เพื่อดูดสออกแบบข้อตกลงนี้และเพื่อให้บรรลุในการพัฒนาซีที่ขัดความเป็นอยู่ของมนุษย์ในเชิงบวกและการเพิ่มความหลากหลายทางชีวภาพ โดยมีเป้าหมายโดยรวมของโครงการคือการวัดคุณค่าและการทำงานให้คุณค่าของธรรมชาติเป็นหลักสำคัญในการตัดสินใจและการกำหนดนโยบาย เพื่อเน้นให้เห็นถึงปัญหาที่ถูกขัดแย้งและมักถูกมองเป็นเหตุให้ในธรรมชาติที่มีผลกระทบต่อการผลิตทางการเกษตร และสิ่งที่ต้องแตกในการตัดสินใจเกี่ยวกับการใช้ที่ดิน เพื่อน้อมถึงความช่วยเหลือของระบบการเกษตรกับสุขภาพของมนุษย์ วัฒนธรรม และระบบนิเวศอื่น ๆ ในการพิจารณารักษาและเพื่อให้ผลการศึกษาจากงานวิจัยนี้นำไปสู่การวางแผนรวมกันของพันธมิตรและผู้มีส่วนได้ส่วนเสีย لเล็กน้อยสู่การดำเนินการปฏิบัตินโยบายและมาตรการระดับชาติ เพื่อให้บรรลุเป้าหมายการพัฒนาที่ยั่งยืนภายในปี พ.ศ. 2573

กรอบการทำงานในการประเมิน TEEBAgriFood และวิธียของการให้ถึงความหมาย ได้รับการพัฒนาโดยความร่วมมือของนักวิทยาศาสตร์จากประเทศและสาขาวิชาต่าง ๆ วิธีการนี้ได้รับการสานเครื่องในรายงาน “Measuring What Matters in Agriculture and Food System (การวัดสิ่งที่สำคัญในระบบเกษตรและอาหาร)” (UNEP, 2018) และมีการอธิบายรายละเอียดเพิ่มเติมในรายงาน “TEEB for Agriculture & Food Scientific and Economic Foundations (TEEB เพื่อการเกษตรและอาหาร: ฐานข้อมูลทางวิทยาศาสตร์และเศรษฐกิจ)” (UNEP, 2018) สำหรับARGER ของนักวิชาการนี้ได้รับการปรับเพื่อใช้กับภาคการผลิตข้าวที่ 1 ด้านล่างและแสดงแนวทางโดยเน้นการพิจารณาของระบบข้าวต่อคุณค่าต้นทุนทางธรรมชาติ ทุนมนุษย์ ทุนทางสังคม ทุนสิ่งแวดล้อม ทุนมูลค่า และผลกระทำที่ระบบผลิตข้าวสร้างขึ้น

![การสะท้อนค่าในระบบผลิตข้าว](image)

รูปที่ 1: กรอบการทำงานในการประเมิน TEEBAgriFood ที่ปรับให้เข้ากับภาคการผลิตข้าว: การวัดคุณค่าที่ ‘มองไม่เห็น’ ของระบบข้าวในการวิเคราะห์ทางเศรษฐศาสตร์ทั่วไป
2. การประยุกต์ใช้กระบวนการที่เกี่ยวกับการประเมิน TEEBAgriFood กับบริบทข้าวไทย

ข้าวเป็นพืชที่ดีที่สุดในประเทศไทยและเป็นอาหารหลักของครัวเรือนไทย นอกจากนี้ยังเป็นแหล่งที่มีความสำคัญของครัวเรือนที่ทำกว่า 4.30 ล้านครัวเรือนซึ่งครอบคลุมประชากรประมาณ 20 ล้านคน หรือประมาณร้อยละ 28 ของประชากรไทย (National Statistical Office, 2019) การปลูกข้าวของพื้นที่ประมาณร้อยละ 50 ของพื้นที่เกษตรทั้งหมดในประเทศไทย (Office of Agricultural Economics, 2020) โดยพื้นที่ด้านเหนือหรือประมาณร้อยละ 62 ของพื้นที่ปลูกข้าวอยู่ในภาคตะวันออกเฉียงเหนือ (Office of Agricultural Economics, 2020) ซึ่งมีความแตกต่างจากที่ราบภาคกลางของประเทศไทย พื้นที่ด้านเหนือของภาคตะวันออกเฉียงเหนือไม่สามารถเข้าถึงระบบของประทาน เกษตรกรส่วนใหญ่ในภูมิภาคนี้จึงผลิตข้าวในเส้นทางที่แตกต่างไป โดยเน้นการทำกำไรสูงในฤดูฝน

การทำนาในประเทศไทยดำเนินการโดยเกษตรกรทั้งเพศชายและเพศหญิง เกษตรกรผู้ปลูกข้าวในประเทศไทยส่วนใหญ่เป็นเกษตรกรรายย่อย ครัวเรือนเฉลี่ย 2.08 เลอกครัวต่อครัวเรือน (OAE, 2018) - 43% ของครัวเรือนที่ทำเลือดของที่ดินน้อยกว่า 10 ไร่ (1.6 เลอกครัว) ด้วยผลตอบแทนจากข้าวรายปีที่ค่อนข้างต่ำ ชาวนาข้าวจวนนำมาใหม่ของความเสี่ยง และไม่เพียงปลูกข้าวเพื่อการสร้างรายได้เท่านั้น แต่ยังเป็นการปลูกเพื่อกระจายความเสี่ยงและรักษาความมั่นคงทางอาหารอีกด้วย (ดูตกลงข้อความที่ 2 ด้านล่าง)

นาข้าวเป็นระบบนิเวศทางการเกษตรประเภทหนึ่งที่มีลักษณะเฉพาะ -ในการปลูกข้าวในระบบ นิเวศของนาข้าวครอบคลุมแหล่งที่อยู่อาศัยของสิ่งมีชีวิตที่หลากหลายซึ่งเกิดขึ้นอย่างข้าวคร้าว มีระบบต่าง ๆ สู่ระบบพืชและสัตว์หลากหลายสาเหตุ (Edirisinghe และ Bambaradeniya 2010; Bambaradeniya et al. 2004) นอกจากนี้นาข้าวเป็นแหล่งของอาหารและการดำรงชีวิตแล้ว ระบบนิเวศเกษตรของข้าวยังสร้างบริการจากระบบนิเวศที่หลากหลายสำหรับชุมชนท้องถิ่นและสาธารณะ (ดูตกลงข้อความที่ 3 ด้านล่าง)

แนวปฏิบัติที่แตกต่างกันในการจัดการการปลูกข้าวเชิงเดี่ยว ตั้งแต่การเตรียมดิน การเพาะปลูก จนถึงการจัดการหลังการเก็บเกี่ยว อาจส่งผลให้เกิดผลกระทบที่แตกต่างกันต่อการบริการจากระบบนิเวศในนาข้าว ความสนใจหลักของผู้กำหนดนโยบายเกี่ยวกับการผลิตข้าวในประเทศไทยคือการเพิ่มผลผลิตเพื่อสร้างความมั่นคงทางอาหารและความสามารถในการแข่งขันในตลาดโลก ปุ๋ยเคมีและยาฆ่าแมลงเป็นสิ่งสำคัญที่เริ่มใช้เป็นมาตรฐานในการปลูกข้าวที่ต่างจากเก่าการปลูกครั้งเดิม แต่จะต้องรับประทาน aktual approximately 21% จะถูกเผาหลังการเก็บเกี่ยว เพื่อจำกัดและควบคุมแมลงศัตรูพืช ทั้งนี้จึงจะได้เกิดผลกระทบต่อการบริการจากระบบนิเวศที่หลากหลายเชิงภาพรวมข้าวสำหรับชุมชนท้องถิ่น และผลกระทบต่อชีวภาพในระดับที่ต่อสัตว์น้ำและต้นต้น อื่น ๆ รวมถึงปรากฏการณ์ยูโทรฟิเคชัน (Eutrophication) และมลพิษของแหล่งน้ำ ส่งผลกระทบต่อสิ่งมีชีวิตในระบบแม่น้ำที่เป็นไปได้ ที่ต่อต้นทุมชนที่สำคัญทางที่ดินสูง รวมถึงยังส่งผลให้เกิดความเสียหายต่อระบบนิเวศที่แตกต่างกันและส่งผลกระทบต่อชุมชนที่ต้องอยู่สัมพันธ์กับสารเคมีในนาข้าวและผู้ที่อยู่อาศัยในยาง
การปลูกข้าวอินทรีย์ได้รับความสนใจจากเกษตรกรไทยเพิ่มมากขึ้น โดยเฉพาะเมื่อพื้นที่ปลูกข้าวอินทรีย์เพิ่มขึ้นประมาณ 18,000 เฮกตาร์ในแต่ละปี ระหว่างปี พ.ศ. 2562-2564 โดยแนวปฏิบัติเกี่ยวกับการผลิตข้าวอินทรีย์มีการเปลี่ยนแปลงอย่างมีความลึกซึ้ง ซึ่งบ่งชี้ถึงความมุ่งมั่นของเกษตรกรในการปลูกข้าวอินทรีย์เพิ่มเติม ปี พ.ศ. 2556 ซึ่งเป็นปีที่ความมุ่งมั่นอย่างกว้างขวางของเกษตรกรในภาคตะวันออกเฉียงเหนือ.

หลายครัวเรือนที่มีอาชีพทํานาในภาคตะวันออกเฉียงเหนือของประเทศไทย ได้รับผลกระทบจากต้นทุนการผลิตที่เพิ่มขึ้นพร้อมกับอัตราการเปลี่ยนแปลงของรายได้ ตามข้อมูลของ Attavanich et al. 2019 สาเหตุส่วนหนึ่งอธิบายได้จากโครงสร้างของตลาดนําเข้าและส่งออกของข้าวซึ่งมีแนวโน้มที่จะแข็งคั่นได้อย่างมากและมีการเปลี่ยนแปลงสูง ผลต่อที่เกษตรกรที่มีแนวปฏิบัติในการผลิตข้าวอินทรีย์ในภาคตะวันออกเฉียงเหนือที่เพิ่มขึ้น.

ข้อมูลจากทะเบียนเกษตรกรกลางกรมส่งเสริมการเกษตรเป็นเอกสารของปี พ.ศ. 2561 แสดงให้เห็นว่าเกษตรกรผู้ปลูกข้าวในภาคตะวันออกเฉียงเหนือมีรายได้เฉลี่ยต่อปี 60,276 บาท ซึ่งต่ำกว่าข้อมูลในกรณีที่นําข้อมูลจากสภาเกษตรกรผู้ผลิตข้าว ที่ได้รับเงินช่วยเหลือจากโครงการเพื่อการเกษตรและสหกรณ์การเกษตร (ก.ก.ส.) (Chantarat et al 2020) พบว่า 27% ของครัวเรือนเกษตรกรมีรายได้ต่ํากว่าเส้นความยากจน.

ข้อมูลจากทะเบียนเกษตรกรกลางกรมส่งเสริมการเกษตรเป็นเอกสารของปี พ.ศ. 2561 แสดงให้เห็นว่าเกษตรกรผู้ปลูกข้าวสามารถเข้าถึงความช่วยเหลือต่าง ๆ จากภาครัฐมากกว่าครัวเรือนร้อยละ 95% (เกษตรกร) เงินประกันพืชผลสําหรับข้าว (44% ของเกษตรกร), การพักชําระหนี้ (33% ของเกษตรกร), เงินช่วยเหลือในการพักชําระหนี้จากการประกันสินเชื่อ (11% ของเกษตรกร), การช่วยเหลือในการปลูกพืชปีใหม่ (6.5% ของเกษตรกร) นโยบายเพื่อเกษตรกรที่มีความมุ่งมั่นในการปลูกข้าว (0.3% ของเกษตรกร) และนโยบายอื่น ๆ (17% ของเกษตรกร) ได้รับเงินช่วยเหลือเฉลี่ยประมาณ 17,000 บาทต่อครัวเรือนต่อปี.

การเข้าถึงทรัพยากรน้ําเป็นปัจจัยที่เข้ามามีส่วนในการจัดการผลิตพืชผลทางการเกษตรเมื่ออุณหภูมิสูงขึ้น และรูปแบบปริมาณน้ําที่เกี่ยวข้องกับการผลิตพืชผลทางการเกษตรมีการเปลี่ยนแปลงต่อไป ได้แก่เงินลูกหนี้ต่ํา 2,000, 3,000 และ 4,000 บาทตามลำดับต่อปี 3 ปี โดยเกษตรกรที่มีการจ่ายเงินลูกหนี้ต่ํา 2,000, 3,000 และ 4,000 บาทตามลำดับต่อปี 3 ปี ได้รับเงินช่วยเหลือจากเกษตรกรที่มีการจ่ายเงินช่วยเหลือต่ํา 2,000, 3,000 และ 4,000 บาทตามลำดับต่อปี 3 ปี.

การเข้าถึงทรัพยากรน้ําเป็นปัจจัยที่เข้ามามีส่วนในการจัดการผลิตพืชผลทางการเกษตรเมื่ออุณหภูมิสูงขึ้น และรูปแบบปริมาณน้ําที่เกี่ยวข้องกับการผลิตพืชผลทางการเกษตรมีการเปลี่ยนแปลงต่อไป ได้แก่เงินลูกหนี้ต่ํา 2,000, 3,000 และ 4,000 บาทตามลำดับต่อปี 3 ปี.

หมายเหตุ 1,000 บาท = ประมาณ 33 เหรียญสหรัฐ
ปลูกข้าวอินทรีย์คือห้ามใช้ปุ๋ยเคมีและยาฆ่าแมลง และมุ่งเน้นไปที่การสร้างคุณภาพของดินด้วยสัตว์และปุ๋ยพืช ผลการจัดการศัตรูพืชด้วยการควบคุมทางชีวภาพโดยใช้ประโยชน์จากบริการของระบบนิเวศตามธรรมชาติ และเสริมประสิทธิภาพการท้างานของความหลากหลายทางชีวภาพ (Wachter and Reganold, 2014) แนวปฏิบัติแบบเกษตรอินทรีย์จะสามารถเพิ่มความหลากหลายทางชีวภาพ ส่งเสริมบริการจากระบบนิเวศ ลดการปล่อยก๊าซเรือนกระจก และลดผลกระทบที่ไม่พึงประสงค์ต่อสุขภาพของมนุษย์ เมื่อเทียบกับการปลูกข้าวแบบต้นเดิม อย่างไรก็ตาม เกษตรกรจำนวนมากก็ยังมีความคิดว่าการทำข้าวอินทรีย์จะทำให้ได้ผลผลิตข้าวน้อยกว่าการทำข้าวแบบต้นเดิมโดยเฉพาะในช่วงเปลี่ยนผ่าน ซึ่งจะส่งผลให้รายได้ของเกษตรกรเกิดความเสี่ยงสูงขึ้น

เป้าหมายที่แตกต่างกันโดยสิ้นเชิงของความมั่นคงด้านอาหารและรายได้ กับการลดผลกระทบด้านสิ่งแวดล้อมและสุขภาพ ต่างกันที่ความสำคัญและต้องการที่จะต้องอยู่ที่การลดที่ต้องเผชิญกับสิ่งเหล่านี้มีแนวโน้มที่จะต้องแตกกันบางส่วน ประเด็นสำคัญคือการลดที่ต้องลงเพื่อให้บรรลุเป้าหมายต่าง ๆ เพลินนี้ และการทำอาหารเสริมก็จะต้องได้รับการสนับสนุนสูงและความเป็นอยู่ที่ดีขึ้นของเกษตรกร ในขณะเดียวกันก็ยังต้องต้องให้กับสิ่งแวดล้อมและสังคม การศึกษาชี้วัดดูประสงค์เพื่อคาดว่าจะยั่งยืนในทางการพิจารณาแบบจำลองสถานการณ์ที่เป็นแบบและของเขาจะเห็นถึงสิ่งที่มีผลต่อการพิจารณาในทางการผลิตข้าวอินทรีย์ในประเทศไทยต่อไป และระบบต้องหันเน้นไปที่สิ่งที่ปลูกข้าวในภาคตะวันออกเฉียงเหนือถึงภาคตะวันออกเฉียงใต้ และนั่นคือสิ่งที่เป็นปัจจัยส่งผลต่อการพิจารณา

การนำกรอบการทำงานในการประเมิน TEEBAgriFood มาใช้เพื่อวิเคราะห์เปลี่ยนแปลงเชิงปริมาณที่เกิดขึ้นกับผลผลิต ทุนธรรมชาติ และทุนมนุษย์ ภายใต้แบบจำลองสถานการณ์ 3 แบบ โดยเจาะจงกับ "การทำธุรกิจตามปกติ" (BAU: Business as Usual) ในด้านทุนการผลิต ได้มีการจำลองการเปลี่ยนแปลงของผลผลิตข้าวและด้านทุนการผลิต รวมทั้งด้านทุนเริ่มต้นในการเตรียมที่ดินสำหรับการผลิตแบบเกษตรอินทรีย์ ในด้านทุนธรรมชาติ มีการประเมินผลกระทบจากที่จะเกิดขึ้นกับการปลูกข้าวอินทรีย์ ลดการปล่อยก๊าซเรือนกระจกและความหลากหลายทางชีวภาพ ต่างกันที่ความมั่นคงของสิ่งแวดล้อม และมีการพิจารณาผลกระทบต่อสุขภาพ ผลกระทบว่ามีการเปลี่ยนแปลงจำนวนเงินที่แสดงให้เห็นถึงมูลค่าของสิ่งที่ต้องแสดงเปลี่ยนแปลงและช่วยให้ผู้กำหนดนโยบายเห็นแบบจำลองสถานการณ์ที่ดีที่สุดในที่ต้องย้ายกับ BAU นอกจากนี้ยังมีการศึกษาทุนทางสังคมในเชิงคุณภาพเพื่อให้ทราบถึงข้อมูลเชิงลึกที่ควรพิจารณาอย่างจริงจังต่อผลกระทบร่วมกับการพิจารณาแบบจำลองสถานการณ์ เพื่อการออกแบบนโยบาย

ในรายงานสรุปด้านล่าง บทที่ 3 เป็นการนำเสนอข้อเรื่องของสถานการณ์ที่คาดการณ์ไว้ รวมถึงแผนที่ของการเปลี่ยนแปลงการใช้ในภาคการเกษตร ซึ่งแสดงให้เห็นการเปลี่ยนแปลงในพื้นที่เฉพาะปลูกข้าวรวมไปถึงข้อเรื่องของข้าวธรรมชาติ และข้าวอินทรีย์ในแต่ละสถานการณ์ การเปลี่ยนแปลงที่คาดว่าจะเกิดจากการศึกษาได้เจาะจงไว้ในบทที่ 4 ส่วนในบทที่ 5 ระบุข้อมูลที่เป็นตัวชี้วัดของการเปลี่ยนแปลงแปลงและนี่เพื่อให้สามารถนำไปใช้สำหรับการเปลี่ยนแปลงได้ โดยตรง และนำเสนอผลการวิเคราะห์ที่ได้จากการเปลี่ยนแปลงของผลผลิตอันเป็นผลมาจากจากการขยายตัวของการปลูกข้าวอินทรีย์ภายใต้แบบจำลองสถานการณ์ทั้งสามแบบ บทสรุปและข้อความสำคัญที่สรุปไว้ในบทที่ 6
ความเกี่ยวข้องของผลเหล่านี้ต่อการอภิปรายนโยบายด้านสิ่งแวดล้อมและด้านการเกษตรของไทยในปัจจุบันและข้อเสนอแนะได้สรุปไว้ในบทที่ 7 และข้อความสำคัญจากการวิจัยยังถูกนำเสนอในเอกสารประกอบที่มีอยู่บนเว็บไซต์ TEEB

สิ่งที่ค้นพบทั้งหมดและการอภิปรายเกี่ยวกับการวิเคราะห์สถานการณ์ ถูกนำเสนอในรายงานที่แยกออกมาต่างหาก โดยเฉพาะของ TEEBAgriFood Thailand ซึ่งมีอยู่บนเว็บไซต์ของ TEEB เช่นกัน

กล่องข้อความที่ 3: ระบบบินใหม่ของการข้าว: บริการของระบบนิเวศและความสามารถทางชีวภาพและความเป็นอยู่ที่ดีของมนุษย์

บริการของระบบนิเวศ (Ecosystem Services) หมายถึงสิ่งที่ธรรมชาติมีให้แก่มนุษย์ นอกเหนือไปจากข้าวแล้ว ก็ยังมีสัตว์หลากหลายชนิดและพืชอื่น ๆ ในนาข้าวที่มีคุณค่าต่อชีวิตของมนุษย์และสมาชิกในชุมชนเกษตรกรรมอีกด้วย การศึกษาในภาคตะวันออกเฉียงเหนือของประเทศไทยระบุว่าพืชและสัตราวิทยาดีผลกระทบต่อชีวิตและแรงงาน ๆ นาข้าว ซึ่งเมื่อว่าให้ประโยชน์ด้านอาหารและด้านชีวภาพต่างๆ ที่สำคัญแก่เกษตรกร

สัตว์ในนาข้าวมีคุณค่าทางเกษตรกรรมทั่วถึง เช่น เป็นอาหารเป็ดและไก่ และบางส่วนการเก็บเกี่ยว ทางข้าวอาจใช้เป็นอาหารให้กับเกษตรกร โดยการสร้างจังหวะการผลิตอาหารเพื่อเสริมสรรพอาหาร ซึ่งไม่ได้เปรียบ แต่ยังมีสารอาหารที่มีประโยชน์อื่น ๆ แก่คนท้องถิ่น

มีการจัดการพื้นที่นาข้าวเพื่อเพิ่มผลผลิตทางเกษตรและเพื่อความหลากหลายของเกษตรกร การตัดสินใจหลายอย่างที่ทำให้ต้องพิจารณาการบริหารจัดการนาข้าวให้คุ้มค่าและมีคุณค่าต่อการพัฒนาเศรษฐกิจและสังคมที่จะทำให้เกษตรกรมีผลผลิตในด้านการผลิตที่มีประสิทธิภาพในหลากหลายด้าน เช่น การกระจายการผลิตพืชและสัตว์รวมถึงการผลิตผลิตผลทางอื่น ๆ ที่สำคัญ

นาข้าวเป็นแหล่งที่มีความหลากหลายทางชีวภาพทางเกษตรกรรมในระดับสูง ซึ่งส่วนใหญ่เป็นประโยชน์ต่อการผลิตข้าว แม้มันและแมลงเป็นส่วนหนึ่ง เช่น จะส่งผลต่อผลผลิตของนาข้าว มีส่วนในการควบคุมแมลงศัตรูข้าว เช่น เพลี้ยจั่น การตรวจสอบและวัตถุประสงค์สายพันธุ์ศัตรูพืชที่สูงขึ้นได้รับผลกระทบเชิงลบจากการขัดขวางการค้นหาสิ่งที่มีประโยชน์ในการใช้สารก่อกำจัดศัตรูพืช (Heong et al. 2015; Spangenberg et al. 2015) ที่ไม่มีการเอกลักษณ์ระหว่างศัตรูพืชและแมลงที่มีประโยชน์ การใช้ยาฆ่าแมลงในอีกฝั่งที่ทำให้เกิดการขัดขวางของปริมาณแมลงศัตรูพืช (Horgan et al. 2018; Gurr et al. 2016) เนื่องจากเมื่อเวลาผ่านไปแมลงศัตรูพืชสามารถปรับตัวให้มีความคุ้นเคยด้วยแมลงอื่นขึ้น ซึ่งทำให้การผลิตและผลผลิตดังกล่าวมีผลต่อการเปลี่ยนแปลงของสิ่งแวดล้อม

สายพันธุ์การอาหาร (Food Web) ที่มีการกระจายข้าวใน-na- เช่น บนนาข้าวเป็นประโยชน์ต่อการผลิตข้าว แม้มันและแมลงเป็นส่วนหนึ่ง เช่น จะส่งผลต่อผลผลิตของนาข้าว มีส่วนในการควบคุมแมลงศัตรูข้าว เช่น เพลี้ยจั่น การตรวจสอบและวัตถุประสงค์สายพันธุ์ศัตรูพืชที่สูงขึ้นได้รับผลกระทบเชิงลบจากการขัดขวางการค้นหาสิ่งที่มีประโยชน์ในการใช้สารก่อกำจัดศัตรูพืช (Heong et al. 2015; Spangenberg et al. 2015) ที่ไม่มีการเอกลักษณ์ระหว่างศัตรูพืชและแมลงที่มีประโยชน์ การใช้ยาฆ่าแมลงในอีกฝั่งที่ทำให้เกิดการขัดขวางของปริมาณแมลงศัตรูพืช (Horgan et al. 2018; Gurr et al. 2016) เนื่องจากเมื่อเวลาผ่านไปแมลงศัตรูพืชสามารถปรับตัวให้มีความคุ้นเคยด้วยแมลงอื่นขึ้น ซึ่งทำให้การผลิตและผลผลิตดังกล่าวมีผลต่อการเปลี่ยนแปลงของสิ่งแวดล้อม

สารอาหารใน-na- เช่น บนนาข้าวเป็นประโยชน์ต่อการผลิตข้าว แม้มันและแมลงเป็นส่วนหนึ่ง เช่น จะส่งผลต่อผลผลิตของนาข้าว มีส่วนในการควบคุมแมลงศัตรูข้าว เช่น เพลี้ยจั่น การตรวจสอบและวัตถุประสงค์สายพันธุ์ศัตรูพืชที่สูงขึ้นได้รับผลกระทบเชิงลบจากการขัดขวางการค้นหาสิ่งที่มีประโยชน์ในการใช้สารก่อกำจัดศัตรูพืช (Heong et al. 2015; Spangenberg et al. 2015) ที่ไม่มีการเอกลักษณ์ระหว่างศัตรูพืชและแมลงที่มีประโยชน์ การใช้ยาฆ่าแมลงในอีกฝั่งที่ทำให้เกิดการขัดขวางของปริมาณแมลงศัตรูพืช (Horgan et al. 2018; Gurr et al. 2016) เนื่องจากเมื่อเวลาผ่านไปแมลงศัตรูพืชสามารถปรับตัวให้มีความคุ้นเคยด้วยแมลงอื่นขึ้น ซึ่งทำให้การผลิตและผลผลิตดังกล่าวมีผลต่อการเปลี่ยนแปลงของสิ่งแวดล้อม

สารอาหารใน-na- เช่น บนนาข้าวเป็นประโยชน์ต่อการผลิตข้าว แม้มันและแมลงเป็นส่วนหนึ่ง เช่น จะส่งผลต่อผลผลิตของนาข้าว มีส่วนในการควบคุมแมลงศัตรูข้าว เช่น เพลี้ยจั่น การตรวจสอบและวัตถุประสงค์สายพันธุ์ศัตรูพืชที่สูงขึ้นได้รับผลกระทบเชิงลบจากการขัดขวางการค้นหาสิ่งที่มีประโยชน์ในการใช้สารก่อกำจัดศัตรูพืช (Heong et al. 2015; Spangenberg et al. 2015) ที่ไม่มีการเอกลักษณ์ระหว่างศัตรูพืชและแมลงที่มีประโยชน์ การใช้ยาฆ่าแมลงในอีกฝั่งที่ทำให้เกิดการขัดขวางของปริมาณแมลงศัตรูพืช (Horgan et al. 2018; Gurr et al. 2016) เนื่องจากเมื่อเวลาผ่านไปแมลงศัตรูพืชสามารถปรับตัวให้มีความคุ้นเคยด้วยแมลงอื่นขึ้น ซึ่งทำให้การผลิตและผลผลิตดังกล่าวมีผลต่อการเปลี่ยนแปลงของสิ่งแวดล้อม
3. การวิเคราะห์แบบจำลองสถานการณ์

การวิเคราะห์แบบจำลองสถานการณ์ช่วยให้เราสามารถเปรียบเทียบผลลัพธ์ที่จะเกิดขึ้นในอนาคตจากการใช้นโยบายที่แตกต่างกันได้ ทั้งนี้วิธีการวิเคราะห์แบบจำลองสถานการณ์ช่วยให้เราสามารถเปรียบเทียบผลลัพธ์ที่จะเกิดขึ้นในอนาคตจากการใช้นโยบายที่แตกต่างกัน และเปรียบเทียบประโยชน์และต้นทุนของระบบการผลิตข้าวที่แตกต่างกันผ่านการเปรียบเทียบระหว่างแบบจำลองสถานการณ์ที่เป็นไปได้สามแบบ ซึ่งจะต้องกำหนดขึ้นบนพื้นฐานของนโยบายที่เป็นไปได้ และเชื่อมโยงกับรูปแบบของรัฐบาลในการพัฒนาภาคข้าวอย่างยั่งยืน กลุ่มเป้าหมายของผู้มีส่วนได้ส่วนเสียในพื้นที่ที่ศึกษา ได้แก่ เจ้าหน้าที่เกษตรท้องถิ่น เกษตรกร โรงสี ผู้ค้า ธนาคารเพื่อการเกษตร และหัวหน้าองค์กรเกษตรกร ทั้งหมดนี้ได้รับเชิญให้มาร่วมเป็นส่วนหนึ่งในการพัฒนาการเกษตรอินทรีย์ แบบจำลองสถานการณ์ที่แสดงด้านล่างได้รับการอนุมัติจากคณะกรรมการขับเคลื่อนด้านของ TEEAgri และมีส่วนสนับสนุนผลประโยชน์และแนวทางการเกษตรอินทรีย์และสิ่งแวดล้อมที่ได้รับการอนุมัติจากคณะกรรมการขับเคลื่อนด้านของ TEEAgri เซียงมีงานนโยบายและแผนทรัพยากรธรรมชาติและสิ่งแวดล้อม (สผ.) เป็นประธาน และประกอบไปด้วยหน่วยงานจากกระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม และกระทรวงเกษตรและสหกรณ์ตลอดจนสภาการเกษตรอินทรีย์และสังคมเกษตรอินทรีย์

3.1 การพัฒนาแบบจำลองสถานการณ์

แผนและนโยบายที่นำมาพิจารณาในการพัฒนาแบบจำลองสถานการณ์เพื่อการประเมินได้แก่โครงการนำร่องการปลูกข้าวอินทรีย์หนึ่งล้านไร่ซึ่งเป็นโครงการที่ดำเนินอยู่ในปัจจุบัน (พ.ศ. 2560-2564) และแผนยุทธศาสตร์ 20 ปีของประเทศไทย (พ.ศ. 2560-2579) และแผนแม่บทเพื่อการเกษตรที่ยั่งยืนซึ่งจะส่งเสริมการขยายตัวของสินค้าเกษตรอินทรีย์ของประเทศไทยสำหรับตลาดทั้งในและต่างประเทศ กรอบเวลาสู่การวิเคราะห์สถานการณ์คือ 17 ปี เริ่มตั้งแต่ปี พ.ศ. 2562 และสิ้นสุดในปี พ.ศ. 2578 กรอบเวลานี้กำหนดเป็นช่วง ๆ กล่าวคือระหว่างปี 2562-2568 (ต้นทุนและผลประโยชน์ระยะสั้น), 2562-2573 (ต้นทุนและผลประโยชน์ระยะกลาง), 2562-2578 (ต้นทุนและผลประโยชน์ระยะยาว)

เป้าหมายของโครงการปลูกข้าวอินทรีย์ในปีจุบันของกรมการข้าว กระทรวงเกษตรและสหกรณ์คือการส่งเสริมการผลิตข้าวอินทรีย์ในทุกจังหวัดทั่วประเทศ คือ การส่งเสริมให้อาชีพเกษตรกรที่ดำเนินการผลิตข้าวเพื่อการบริโภคเป็นสินค้าเกษตรอินทรีย์หรือเกษตรกรรมแบบอินทรีย์ภายในปี พ.ศ. 2562 และเป้าหมายขั้นต่ำของการจัดทำแผนแม่บทในการจัดการเกษตรและสหกรณ์ แห่งรัฐบาลไทย ซึ่งจะระบุขั้นตอนที่เกี่ยวกับการจัดการเกษตรกรรมทั้งหมด 100 เปอร์เซ็นต์ทั่วประเทศ (149 ล้านไร่หรือ 23 ล้านเอกตร) ควรใช้แนวทางเกษตรกรรมแบบอินทรีย์หรือเกษตรยั่งยืนภายในปี พ.ศ. 2573 เพื่อรอบการวิเคราะห์ชี้พื้นที่คาดว่าพื้นที่เกษตรกรรมทั้งหมด 2 จะเป็นพื้นที่เกษตรอินทรีย์ภายในปี พ.ศ. 2564 (ประมาณ 3 ล้านไร่หรือ 0.48 ล้านเอกตร) และภายในปี พ.ศ. 2569 พื้นที่เกษตรกรรมร้อยละ 7 (ประมาณ 10 ล้านไร่หรือ 1.6 ล้านเอกตร) การจะอยู่ภายใต้วาดเกษตรอินทรีย์ และหลังปี พ.ศ. 2573 พื้นที่เกษตรกรรมร้อยละ 30 (ประมาณ 40 ล้านไร่หรือ 6.4 ล้านเอกตร) จะจะอยู่ภายใต้วาดเกษตรอินทรีย์ภายในปีจุบัน

1 Committee on Agriculture and Cooperatives (คณะกรรมาธิการด้านการเกษตรและสหกรณ์) https://bit.ly/20Ql4dD
สถานการณ์ที่นำมาใช้ในการศึกษานี้สมมติฐานว่าพื้นที่กว่าร้อยละ 80 ของพื้นที่เป้าหมายสำหรับการพัฒนาเกษตรอินทรีย์มุ่งเน้นไปในการผลิตข้าว (ตามที่กล่าวไว้ด้านล่าง) ซึ่งจากข้อมูลของกระทรวงเกษตรและสหกรณ์ การส่งเสริมการปลูกข้าวอินทรีย์ไม่มีเป้าหมายหลักในภาคตะวันออกเฉียงเหนือ โปรดสังเกตว่าในแต่ละสถานการณ์ที่อธิบายไว้ด้านล่าง พื้นที่เพาะปลูกข้าวโดยรวมจะไม่เปลี่ยนแปลง สถานการณ์ต่าง ๆ สมมุติว่าการใช้ประโยชน์ที่ดินอื่น ๆ ที่มีอยู่ยังคงเหมือนเดิม การเปลี่ยนแปลงเพียงอย่างเดียวคือสัดส่วนของการพัฒนาแบบดั้งเดิมและแบบอินทรีย์

รูปที่ 2 เป้าหมายของการกระทรวงเกษตรและสหกรณ์ที่นำมาใช้ในปี พ.ศ. 2560 สำหรับพื้นที่เกษตรกรรมยั่งยืนและเกษตรอินทรีย์ในประเทศไทย

สถานการณ์จำลองที่ 1: การทำธุรกิจตามปกติ (BAU)

สถานการณ์จำลองแบบ BAU กำหนดว่าการดำเนินการโครงการข้าวอินทรีย์หนึ่งล้านไร่ของรัฐบาลประสบความสำเร็จตามเป้าหมาย จนถึง พ.ศ. 2564 ผู้เข้าร่วมโครงการปรับใช้วิธีการปฏิบัติแบบเกษตรอินทรีย์ในการปลูกข้าวและได้รับการรับรองภายใต้โครงการ "Organic Thailand" เกษตรกรอินทรีย์ต้องใช้เวลาอย่างน้อยสามปีเพื่อให้ผ่านการรับรอง โดยในปี พ.ศ. 2568 หรือราวละ 3 ของพื้นที่ปลูกข้าวในปัจจุบันของภาคตะวันออกเฉียงเหนือ สำหรับการคาดการณ์ในอนาคตจะบริหารจัดการที่จะติดต่อกำลังการผลิตข้าวอินทรีย์รายปีในพื้นที่นี้ต่อไป อย่างน้อยจนถึงปี พ.ศ. 2578 สถานการณ์นี้ถือว่าไม่มีการริเริ่มนโยบายเพื่อส่งเสริมภาคเกษตรระบบอินทรีย์ รูปที่ 3 และพื้นที่ภาคตะวันออกเฉียงเหนือของประเทศไทย ซึ่งคาดการณ์ผ่านสถานการณ์จำลองแบบ BAU สำหรับการผลิตข้าวแบบดั้งเดิมและแบบอินทรีย์ตั้งแต่ปี พ.ศ. 2568 ถึง 2578
รูปที่ 3 การขยายพื้นที่ปลูกข้าวอินทรีย์ในภาคตะวันออกเฉียงเหนือของประเทศไทยภายใต้สถานการณ์จำลองแบบการทำธุรกิจตามปกติ (สถานการณ์จำลองที่ 1 หรือ BAU)

หมายเหตุ: ตัวเลขใต้ภาพแต่ละภาพเป็นพื้นที่ปลูกข้าวอินทรีย์ที่คาดการณ์เป็นเฮกตาร์ และตัวเลขในวงเล็บระบุสัดส่วนของการปลูกข้าวอินทรีย์ต่อพื้นที่ปลูกข้าวทั้งหมดในภาคตะวันออกเฉียงเหนือ

สถานการณ์จำลองที่ 2: การส่งเสริมโครงการข้าวอินทรีย์หนึ่งล้านไร่อย่างต่อเนื่อง

สถานการณ์นี้กำหนดว่าโครงการข้าวอินทรีย์หนึ่งล้านไร่จะดำเนินการต่ออย่างต่อเนื่องหลังจากการปังบันสิ้นสุดในปี 2564 เพื่อให้เกษตรกรไทยรับรู้ถึงการเกษตรแบบอินทรีย์เพิ่มมากขึ้น ดังนั้นพื้นที่ภายใต้โครงการส่งเสริมข้าวอินทรีย์จึงขยายเพิ่มขึ้นอีกหนึ่งล้านไร่ ในทุก ๆ ห้าปีถึงปี 2578 รูปที่ 4 แสดงพื้นที่ที่คาดการณ์ว่าจะเป็นพื้นที่สำหรับการปลูกข้าวแบบดั้งเดิมและแบบอินทรีย์ตั้งแต่ปี 2568 ถึง 2578 ตามสถานการณ์จำลองที่ 2

รูปที่ 4 การขยายพื้นที่ปลูกข้าวอินทรีย์ในภาคตะวันออกเฉียงเหนือของประเทศไทยภายใต้สถานการณ์จำลองที่ 2: โครงการข้าวอินทรีย์หนึ่งล้านไร่ดำเนินการต่อไปอย่างต่อเนื่อง

หมายเหตุ: ตัวเลขใต้ภาพแต่ละภาพเป็นพื้นที่ปลูกข้าวอินทรีย์ที่คาดการณ์เป็นเฮกตาร์ และตัวเลขในวงเล็บระบุสัดส่วนของการปลูกข้าวอินทรีย์ต่อพื้นที่ปลูกข้าวทั้งหมดในภาคตะวันออกเฉียงเหนือ
สถานการณ์จำลองที่ 3: การส่งเสริมข้าวอินทรีย์เพิ่มมากขึ้น

สถานการณ์นี้กำหนดว่าไม่เพียงแต่โครงการส่งเสริมข้าวอินทรีย์หนึ่งล้านไร่จะดำเนินต่อไปตามที่คาดการณ์ไว้ในสถานการณ์จำลองที่ 2 เท่านั้น แต่ยังมีการนำโครงการเกษตรแห่งเพิ่มเติมมาใช้หลังปี 2563 เพื่อเร่งให้เกษตรกรผู้ปลูกข้าวของไทยการออกแบบเกษตรแบบอินทรีย์ในทันทีที่ก้าวขึ้น การเริ่มแจ้งนโยบายเพิ่มเติมได้มีการอธิบายรายละเอียด แต่คาดว่าจะได้รับคำแนะนำผ่านความร่วมมือของกระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม กระทรวงเกษตรและสหกรณ์ และกระทรวงอื่น ๆ รวมถึงกระทรวงการคลัง กระทรวงพาณิชย์ ระหว่างปี 2563 ถึง 2578 สถานการณ์จำลองนี้จัดนิยมฐานว่าพื้นที่ข้าวอินทรีย์ในภาคตะวันออกเฉียงเหนือจะขยายเป็น 800,000 เฮกตาร์ 1,600,000 เฮกตาร์ และ 2,400,000 เฮกตาร์ในปี 2568 2573 และ 2578 ตามลำดับ รูปที่ 5 แสดงพื้นที่การปลูกข้าวแบบดั้งเดิมและแบบอินทรีย์ในแต่ละปี 2568 ถึง 2578 ตามสถานการณ์จำลองที่ 3

รูปที่ 5 การขยายพื้นที่ปลูกข้าวอินทรีย์ในภาคตะวันออกเฉียงเหนือของประเทศไทยภายใต้สถานการณ์จำลองที่ 3: การส่งเสริมข้าวอินทรีย์เพิ่มมากขึ้น

หมายเหตุ: ตัวเลขใต้ภาพแสดงละลายพื้นที่ปลูกข้าวอินทรีย์ที่คาดการณ์เป็นสัดส่วน และตัวเลขในวงเล็บแสดงสัดส่วนของพื้นที่ปลูกข้าวอินทรีย์ในภาคตะวันออกเฉียงเหนือ

สถานการณ์จำลองที่ 4: การเปลี่ยนแปลงสู่ความยั่งยืน

สถานการณ์นี้พิจารณาว่ามีความต้องการผลิตข้าวอินทรีย์เพิ่มขึ้นเป็นอย่างมาก และมีการนำโครงการการกระตุ้นเศรษฐกิจที่มีประสิทธิภาพมาใช้เพื่อให้บรรลุเป้าหมายของรัฐบาลในด้านเกษตรอินทรีย์และเกษตรยั่งยืนภายในปี 2573 หมายความว่า 100 เบอร์เซนต์ของพื้นที่เกษตรกรรมในภาคตะวันออกเฉียงเหนือ (149 ล้านไร่ หรือ 23 ล้านเฮกตาร์) จะทำทางปลูกโดยใช้แนวทางปฏิบัติแบบอินทรีย์หรือแบบยั่งยืน ตามเป้าหมายดังกล่าวส่งผลให้มีการทบทวนแผนที่เกษตรกรรมอีก ประมาณมากกว่า 40 ล้านไร่หรือ 6.4 ล้านเฮกตาร์ภายในปี 2573 และคาดว่าจะต้อง 80 ของพื้นที่ที่กำหนดจะมุ่งเน้นที่การผลิตข้าวอินทรีย์ในภาคตะวันออกเฉียงเหนือ รูปที่ 6 แสดงพื้นที่ของการปลูกข้าวแบบต้นเดิมและแบบอินทรีย์ตั้งแต่ปี 2568 ถึง 2578 ตามสถานการณ์จำลองที่ 4
รูปที่ 6 การคาดการณ์การขยายพื้นที่ปลูกข้าวอินทรีย์ในภาคตะวันออกเฉียงเหนือของประเทศไทยได้สถานการณ์จำลองที่ 4: การเปลี่ยนแปลงสุ่มความยั่งยืน

หมายเหตุ: ตัวเลขใต้ภาพแสดงพื้นที่ที่ปลูกข้าวอินทรีย์ที่คาดการณ์เป็นเฮกตาร์ และตัวเลขในวงเล็บแสดงสัดส่วนของพื้นที่ที่ปลูกข้าวอินทรีย์ในภาคตะวันออกเฉียงเหนือ

การเปลี่ยนแปลงการใช้ที่ดินที่เกิดจากการนโยบายที่คาดการณ์ไว้จากแบบดั้งเดิมเป็นแบบอินทรีย์ที่อธิบายไว้ข้างต้นจะเกิดขึ้นในบริบทของการเปลี่ยนแปลงสภาพภูมิอากาศ ซึ่งคาดว่าจะส่งผลกระทบอย่างมากต่อกำกับเกษตรของไทยในระยะเวลายาวนานเนื่องจากสภาพอากาศที่รุนแรง เช่น ความแห้งแล้งในฤดูใบไม้ร่วง และสภาวะที่เกิดจากการเปลี่ยนแปลงของปริมาณน้ำฝนและการเกิดฝน งานวิจัยบางชิ้นเตือนว่าเหตุการณ์สภาพอากาศที่รุนแรง เช่น ความแห้งแล้งในฤดูใบไม้ร่วงและสภาวะที่เกิดการเปลี่ยนแปลงของปริมาณน้ำฝนและการเกิดฝน อาจส่งผลกระทบต่อการผลิตข้าวในอนาคต โดยเฉพาะในบริบทที่มีการปลูกข้าวในที่ลุ่มที่มีฝนตกชุกในบางจังหวัดในภาคตะวันออกเฉียงเหนือ (Sujariya et al. 2020) เมื่ออุณหภูมิสูงขึ้น คาดว่าข้าวจะผลิตน้อยลงในพื้นที่เขตร้อน (Nguyen, 2005; Peng, et al., 2004) Jintrawet et al. (2017) ได้ใช้แบบจำลองสภาพภูมิอากาศห้าแบบเพื่อประเมินสถานการณ์จำลองการปล่อยก๊าซ RCP 4.5 และ 8.5 ในพื้นที่ต่าง ๆ ทั่วประเทศไทย โดยส่วนใหญ่คาดการณ์ว่าผลผลิตข้าวในประเทศไทยจะลดลงในช่วงปี 2549-2583 เนื่องจากการเปลี่ยนแปลงของรูปแบบปริมาณน้ำฝนและการเพิ่มขึ้นของอุณหภูมิ

ในขณะที่ประชากรของประเทศไทยคาดว่าจะเพิ่มขึ้นอย่างค่อนข้างเป็นต่อไปจนถึงประมาณปี 2573 แต่จำนวนจะเริ่มลดลง ประมาณการจำนวนประชากรในปี 2568 2573 และ 2583 คือ 67.09 ล้านคน 67.14 ล้านคน และ 65.37 ล้านคนตามลำดับ ดังนี้

4. สรุปการเปลี่ยนแปลงที่ถูกวัดค่าและจำลองแบบ

การเปลี่ยนแปลงพื้นที่การใช้ที่ดินในแต่ละสถานการณ์เชื่อมโยงกับการเปลี่ยนแปลงปัจจัยทุนต่าง ๆ ที่สามารถวัดค่าได้ ไม่เพียงแต่การเปลี่ยนแปลงที่ดินและทรัพยากรที่เกี่ยวข้อง เช่น ผักผลไม้ที่ดินและทรัพยากรที่เกี่ยวข้อง ตามที่อธิบายไว้ในกระบวนการกำกับของ TEEBAgriFood ผลลัพธ์ของการเปลี่ยนแปลงทางเกษตร การแปรรูป การจัดจำหน่าย และการบริโภค สามารถเข้าใจได้ว่าเป็นการเปลี่ยนแปลงในทุนทรัพยากร ทุนมนุษย์ ทุนทางสังคม และทุนการผลิต ผลลัพธ์ที่เกี่ยวข้องกับการเปลี่ยนแปลงที่ดินในแต่ละสถานการณ์เชื่อมโยงกับการเปลี่ยนแปลงที่ดินและทรัพยากรที่เกี่ยวข้อง ตามที่อธิบายไว้ในกรอบการทุนและการตัดสินใจในทางการผลิต การเปลี่ยนแปลงที่ดินและทรัพยากรที่เกี่ยวข้องกับการเปลี่ยนแปลงที่ดินและทรัพยากรที่เกี่ยวข้องกับการเปลี่ยนแปลงที่ต่างๆ

การวิเคราะห์ TEEBAgriFood ในประเทศไทยใช้วิธีการสร้างแบบจำลองสถานการณ์เพื่อดูถึงผลกระทบต่อสุขภาพของเกษตรกรและประชาชนทั่วไป การเปลี่ยนแปลงที่ดินและทรัพยากรที่เกี่ยวข้อง

การวิเคราะห์ TEEBAgriFood ในประเทศไทยใช้วิธีการสร้างแบบจำลองสถานการณ์เพื่อดูถึงผลกระทบต่อสุขภาพของเกษตรกรและประชาชนทั่วไป ผลกระทบต่อสุขภาพที่ต่างๆ เช่น แบบจำลอง DNDC (Denitrification-Decomposition) และดัชนีความหลากหลายของแซนนอน-วีเนียร์ (Shannon-Wiener diversity index) ถูกนำมาใช้ในการวิเคราะห์ โดยใช้ข้อมูลที่มีอยู่ในต้องถึงและข้อมูลทางสังคม เพื่อทำการวิเคราะห์การเปลี่ยนแปลงของทุนทรัพยากร ทุนผลผลิต ทุนมนุษย์ และทุนทางสังคม ในระยะยาววิธีการประเมินผลผลิตทางเศรษฐศาสตร์ถูกนำมาใช้เพื่อหาค่าของต้นทุนและผลประโยชน์ที่แท้จริงของแนวทางการเกษตรแบบต่าง ๆ ในระบบเกษตรกรรมของข้าว โครงร่างทั้งหมดของวิธีการและรายละเอียดที่ใช้สำหรับแต่ละองค์ประกอบของการวิเคราะห์จะรวมอยู่ในรายงานฉบับเต็ม

ที่วิจัยได้ทำการสำรวจข้าวในเกษตรกรเพื่อรูปแบบการเปลี่ยนแปลงที่เกี่ยวข้องเช่นต่างด้านกันระหว่างเกษตรกรรมที่ดีและเกษตรภูมิที่ดี ต่างแปลงที่มีรูปแบบจากศิลป์ที่ดีจากการสำรวจข้าวในศิลป์ ได้แก่ กระบวนการปลูกข้าว ศิลป์การปลูกข้าว ศิลป์การผลิตข้าว ในระบบเกษตรกรรมที่ดีและเกษตรภูมิที่ดี ศิลป์การผลิตข้าว

AWD: Alternative Wetting and Drying
การเปลี่ยนแปลงของการผลิตข้าวและรายได้

ผลกระทบโดยตรงและเห็นได้ชัดเจนที่สุดประการหนึ่งจากการปลูกข้าวอินทรีย์ต่อเกษตรกรและเศรษฐกิจไทยคือปริมาณผลผลิต รายได้ และต้นทุน เกษตรกรผู้ปลูกข้าวซึ่งเรียกว่าเป็นระบุสูงสุดของเศรษฐกิจไทยและมีบทบาทสำคัญต่อความมั่นคงทางอาหารของประเทศต้องเผชิญกับข้อจำกัดทางเศรษฐกิจเป็นอย่างมาก โดยเฉพาะในพื้นที่นอกเขตชลประทาน (ดูกล่องข้อความที่ 3)

การศึกษาของ TEEBAgriFood สร้างผลจากแบบจำลองโดยใช้แบบจำลอง DNDC เพื่อทำนายปริมาณผลผลิตข้าวภายใต้วิถีการปลูกข้าวแบบดั้งเดิมและแบบอินทรีย์ในช่วงปี 2562-2578 ซึ่งน้ำเลือกสภาพภูมิอากาศที่คาดการณ์โดยสถานการณ์จำลองเพื่อพยากรณ์สภาพภูมิอากาศขั้น bağlantาย (RCP4.5) รวมถึงอุณหภูมิสูงสุดต่ำสุด และอุณหภูมิเฉลี่ย ตลอดจนปริมาณฝนในแต่ละรายวัน เพื่อประเมินการเปลี่ยนแปลงต่ออุตสาหกรรมระบบเนื้อผสมสถานการณ์จำลองข้าวทั้งสี่แบบที่สรุปไว้ข้างต้น การคาดการณ์สภาพอากาศประจักษ์ปานกลาง ตะวันออกเฉียงเหนือของประเทศไทยตั้งแต่ปี 2562 ถึง 2578 และข้อมูลปัจจุบันเกี่ยวกับขณะศึกษาภูมิอากาศที่เกี่ยวข้องและข้อมูลขั้นต้นจากกรมพัฒนาที่ดินได้รวมไว้ในตัวแปรแล้ว และมีการดำเนินการจัดการที่ดินและน้ำ การจัดการเกษตรที่สอดคล้องการปลูกข้าว และข้อจำกัดผลผลิตข้าวสูงสุด การเปลี่ยนแปลงในเขตเมืองที่เกี่ยวข้องกับการเปลี่ยนแปลงของประชากรได้ถูกนำมาในแบบจำลองการใช้ที่ดิน โดยวัดจากระยะทางไปเนาเขตเมืองและถนน และยังมีการประเมินและสร้างแบบจำลองดังเช่นการคาดการณ์ของเศรษฐกิจที่สำคัญของผลผลิตข้าว รายได้เกษตรกร และต้นทุนการผลิตอีกด้วย

บ่อยครั้ง เมื่อพิจารณาการเปลี่ยนแปลงการปลูกข้าวแบบดั้งเดิมเป็นแบบอินทรีย์ที่นั้นเป็นไปได้ไหมและเป็นสิ่งที่ต้องการหรือไม่ มักจะเกี่ยวกับการคาดการณ์ผลผลิตข้าวภายใต้การผลิตแบบอินทรีย์ ซึ่งจะแสดงในระยะสั้นและระยะยาว ความเป็นไปได้ที่ผลผลิตจะลดลงหลังใช้วิธีการปลูกแบบอินทรีย์เป็นประเด็นที่เกษตรกรที่ถูกสำรวจกังวลมากที่สุด พวกเขาหวังว่าในช่วง 1 หรือ 2 ปีแรกของการเปลี่ยนแปลงที่ใช้วิธีการอินทรีย์พวกเขาจะไม่ได้รับผลผลิตใด ๆ เลย อย่างไรก็ตาม ผลการศึกษาในประเทศไทยระบุว่าไม่เป็นเช่นนั้นเสียก็ไม่สามารถข้ามไปยังเกษตรกรที่กำลังจะมุ่งมั่นไปในทางการเปลี่ยนแปลงผลผลิตที่ได้จะต่ำเมื่อเทียบกับผลผลิตที่ได้ก่อนการเปลี่ยนแปลง แต่อย่างไรก็ตาม จากการศึกษาดังกล่าวพบว่า หากเกษตรกรปรับตัวตามความอุตสาหกรรมข้าว หลังจากผ่านไปประมาณ 5 ปี ผลผลิตจะเพิ่มขึ้นสูงและทำให้เกษตรกรผลิตข้าวส่งไปที่ศึกษา โดยเฉพาะในจังหวัดสุรินทร์ เกษตรกรได้ใช้วิธีปลูกข้าวแบบอินทรีย์มาเป็นเวลาเกินกว่า 10 ปี และผลผลิตโดยเฉลี่ยไม่แตกต่างจากข้าวที่ปลูกด้วยวิธีดั้งเดิม

สำหรับข้าวสูตรผลผลิตกั้นพุทธิพิภพที่ใช้ประโยชน์ได้ เช่น ฟางข้าว อาหารป่า และสมุนไพร (ดูกล่องข้อความที่ 2) ทางข้าวสามารถใช้ประโยชน์เป็นอาหารหรือเป็นรายได้ ปรับปรุงดิน และแม้จะทำให้ในสภาวะข้าว ซึ่งอาจจ่ายได้มากกว่าการผลิตต่อไป อย่างไรก็ตาม การศึกษาไม่ได้ทบทวนหรือประเมิณผลผลิตจากข้าวสูตรผลผลิตกั้นพุทธิพิภพที่ใช้ประโยชน์ได้ เช่น ฟางข้าว อาหารป่า และสมุนไพร (ดูกล่องข้อความที่ 2)
ต้นทุนการเพาะปลูกข้าวแบบดั้งเดิมและแบบอินทรีย์วิเคราะห์โดยข้อมูลภาคสนามที่เก็บรวบรวมจากเกษตรกรทั้งสองประเภท ข้อมูลแสดงให้เห็นว่าโครงสร้างต้นทุนของต้นทุนข้าวมีความคล้ายคลึงกัน ข้อมูลการสำรวจจะว่าเกษตรแบบอินทรีย์ให้เครื่องจักรป่วยหรือกำหนดแบบดั้งเดิมสำหรับการเพาะปลูกข้าวอย่างไรก็ตาม การปลูกข้าวแบบดั้งเดิมมีต้นทุนโดยรวมที่สูงกว่าการปลูกข้าวแบบอินทรีย์ โดยส่วนใหญ่เป็นค่าใช้จ่ายที่เกี่ยวกับปุ๋ยเคมีและยาฆ่าแมลง การปลูกแบบอินทรีย์ต้องการใช้สารเคมีกับการจัดสรรที่ซับซ้อนกว่าการปลูกข้าวแบบดั้งเดิม ซึ่งน่าจะส่งผลให้ต้นทุนข้าวแบบดั้งเดิมมีต้นทุนที่สูงกว่าการปลูกข้าวแบบอินทรีย์

ข้อมูลจากการสำรวจอย่างช่วยให้สามารถวิเคราะห์ปริมาณปุ๋ย (สารอาหาร NPK อันได้แก่ ไนโตรเจน, โพสโฟเฟอร์ และโพแทสเซีย) ที่ใช้ในการปลูกข้าวอินทรีย์ โดยพิจารณาจากการเพิ่มมูลสัตว์และปัจจัยทางชีวภาพอื่น ๆ ลงในแปลงนา ปริมาณธาตุอาหารหลัก (NPK) ที่ป้อนให้แก่ข้าวอินทรีย์พบว่าต่ำกว่าการปลูกข้าวแบบดั้งเดิม อย่างไรก็ตาม พบว่ามีปัจจัยอื่น ๆ ที่ช่วยเพิ่มผลผลิตให้แก่เกษตรกรผู้ปลูกข้าวอินทรีย์ จากการสำรวจภาคสนามพบว่าเกษตรกรผู้ปลูกข้าวอินทรีย์มักจะใช้เครื่องจักรสำหรับการลงดิน เช่น การย้ายกล้าข้าวลงแปลงนา (นาดัก) ซึ่งแตกต่างจากการทำแบบดั้งเดิม เกษตรกรที่ทำแบบดั้งเดิมโดยพิจารณาใช้เครื่องจักรที่แก้ปัญหาการปลูกข้าวแบบอินทรีย์ ทำให้เกษตรกรใช้เวลาน้อยกว่าเกษตรกรผู้ปลูกข้าวแบบดั้งเดิม โดยเกษตรกรที่ทำแบบดั้งเดิมมักจะใช้เครื่องจักรสำหรับการลงดิน เช่น การย้ายกล้าข้าวลงแปลงนา (นาดัก) ซึ่งแตกต่างจากการทำแบบดั้งเดิม เกษตรกรที่ทำแบบดั้งเดิมโดยพิจารณาใช้เครื่องจักรที่แก้ปัญหาการปลูกข้าวแบบอินทรีย์ ทำให้เกษตรกรใช้เวลาน้อยกว่าเกษตรกรผู้ปลูกข้าวแบบดั้งเดิม ด้วยเหตุนี้ การศึกษาของเราจึงเน้นไปที่การวิเคราะห์ค่าใช้จ่ายที่มีนัยสำคัญทางสถิติระหว่างผลผลิตจากแปลงเกษตรอินทรีย์และแปลงดั้งเดิม

นอกจากนี้ การเปลี่ยนจากการปลูกข้าวแบบดั้งเดิมไปเป็นการปลูกข้าวแบบอินทรีย์จำเป็นต้องมีการจัดการที่ตันในปีแรก การจัดการที่ตันในปีแรกมีการทำการเพาะปลูกจากที่พัก (buffer) ทางกายภาพเพื่อป้องกันการเปลี่ยนแปลงของสารเคมีที่ตกค้างหรือจากภายนอกเข้าสู่แปลงเกษตรอินทรีย์ ทำให้มีค่าใช้จ่ายเพิ่มขึ้น 114.58 เหรียญสหรัฐต่อเซกเตอร์ในปีแรกที่มีการเปลี่ยนจากการปลูกแบบดั้งเดิมเป็นการปลูกแบบอินทรีย์

มาตรการทั้งหมดนี้ได้รับการวิเคราะห์ความคู่กับแบบจำลองสถานการณ์เพื่อระบุผลกระทบของการขยายพื้นที่ปลูกข้าวอินทรีย์ ซึ่งแสดงไว้ในบทที่ 5 ด้านล่าง

4.2 ผลกระทบทางภาคเอกชนทางการเกษตร – การเปลี่ยนแปลงของค่าต้นทุนธุรกรรมชาติ

สำหรับธุรกรรมชาติ การศึกษามีแนวโน้มไปที่การเปลี่ยนแปลงของความหลากหลายทางชีวภาพและการปลูกข้าวอินทรีย์ ซึ่งเป็นผลจากการเปลี่ยนจากการปลูกข้าวแบบดั้งเดิมเป็นแบบอินทรีย์
ความหลากหลายทางชีวภาพของแมลง

นาข้าวเป็นที่อยู่อาศัยของความหลากหลายทางชีวภาพในระดับสูง การศึกษาที่มุ่งเน้นไปที่สัตว์ขาปล้องนานาชนิด เช่น แมลงและแมงมุม เนื่องจากพวกมันมีผลกระทบอย่างมากต่อกระบวนการผลิตข้าว ความสามารถและหน้าที่ในการควบคุมคัดดรู้พิษสามารถช่วยให้ได้โดยตรงกับผลผลิต แตกต่างจากการมีของสัตว์ปีนและสัตว์ประเภทเดียวกัน แมลงที่มีความหลากหลายทางชีวภาพในระดับสูง นั้น พบกับบางชนิดที่เป็นตัวแปรของผลผลิตข้าวแบบดั้งเดิมและแบบอินทรีย์

ตามที่ระบุไว้ข้างต้น นาข้าวเป็นที่อยู่อาศัยของแมลงหลากหลายชนิด รวมทั้งสัตว์กินพืช ตัวห้า แมลงผสมเกสร ตัวเบียน และอื่น ๆ ตัวข้าวมีความอ่อนไหวต่อแมลงในนาข้าวชนิด สัตว์กินเนื้อที่ไม่มีกระดูกสันหลัง เช่น แมลง และแมงมุม ใช้ระบบนิเวศน์ของข้าวเป็นพื้นที่ในการหลุด คอยควบคุมแมลงที่กินพืชในอาหาร มีประโยชน์ในการลดความเสียหายต่อต้นข้าว บริการของระบบเนื้อและความหลากหลายทางชีวภาพได้รับผลกระทบโดยตรงจากการปลูกข้าวแบบแปลง การใช้การลดการใช้แมลงเพื่อกระตุ้นสัตว์กินพืชเท่านั้น แต่ยังช่วยลดแมลงที่ควบคุมสัตว์กินพืชด้วย ดังนั้น การท่านแบบอินทรีย์และแบบดั้งเดิมจะต้องให้เกิดการเปลี่ยนแปลงองค์ประกอบทางกายภาพ ชีวภาพ และแชนนอนของระบบไบโอติก การเปลี่ยนแปลงดังกล่าวส่งผลให้การบริการของระบบเนื้อและแปลง ซึ่งส่งผลต่อประโยชน์และดัชนีของท่านที่

การประเมิน TEEBAgriFood วิเคราะห์ข้อมูลภาคสนามของแมลงรวมกับข้อมูลจากการศึกษาที่มีอยู่เพื่อเปรียบเทียบความหลากหลายของแมลงในระบบข้าวอินทรีย์และระบบข้าวขาวทั่วไป แบบจำลองสูงน้ำมีการใช้เพื่อคาดการณ์การเปลี่ยนแปลงของดัชนีความหลากหลายของข้าวชนิด-วี้เนอร์ อันเป็นผลมาจากกระบวนการปฏิบัติที่แตกต่างกันมาให้กับการปลูกข้าว มีการสูงขึ้นแบบจำลองในการดันคิดความหลากหลายของข้าวชนิด-วี้เนอร์เพื่อประเมินการตอบสนองของความหลากหลายทางชีวภาพในข้าว โดยพิจารณาจากการคาดการณ์ปริมาณน้ำฝนและอุณหภูมิ ตลอดจนบริบทปฏิสัมพันธ์ที่ใช้ในการปลูกข้าวที่แตกต่างกัน ดังนั้นความหลากหลายทางชีวภาพของข้าวชนิด-วี้เนอร์ข้าวแบบดั้งเดิมอยู่ที่ประมาณ 0.2 ในการที่ข้าวชนิด-วี้เนอร์ข้าวแบบอินทรีย์อยู่ที่ประมาณ 0.6 การสูญเสียของข้าวชนิด-วี้เนอร์ข้าวแบบดั้งเดิมมีความหลากหลายทางชีวภาพอยู่กว่าสูญเสียนักข้าวแบบอินทรีย์ในแปลงแมลงที่มีความอุดมสมบูรณ์และหลากหลาย การวิเคราะห์ผลจากการจำลองข้าวอย่างไรความแปรปรวนของแมลงกับการเปลี่ยนแปลงของดัชนีการผลิตข้าวตามที่รายงานไว้ในบทที่ 5 ด้านล่างอีกด้วย

การปล่อยก๊าซเรือนกระจก

นาข้าวเป็นแหล่งสิ่งแวดล้อมที่สำคัญในการเกิดและปลดปล่อยก๊าซเรือนกระจก ซึ่งในระหว่างการเพาะปลูกมี 2 สาเหตุสำคัญที่เป็นการปล่อยก๊าซเรือนกระจก คือ การปล่อยก๊าซมีเทน (CH4) จากการมีกิจกรรมวิรภัติในนา และการปล่อยก๊าซในชั้นบรรยากาศ (N2O) จากการใส่ปุ๋ย และช่วงหลังเก็บเกี่ยวซึ่งส่วนใหญ่มาจากกระบวนการผลิตข้าว ต่อข้าวข้าว

การประเมิน TEEBAgriFood วิเคราะห์ข้อมูลภาคสนามของแมลงรวมกับข้อมูลจากการศึกษาที่มีอยู่เพื่อเปรียบเทียบความหลากหลายของแมลงในระบบข้าวอินทรีย์และระบบข้าวขาวทั่วไป แบบจำลองสูงน้ำมีการใช้เพื่อคาดการณ์การเปลี่ยนแปลงของดัชนีความหลากหลายของข้าวชนิด-วี้เนอร์ อันเป็นผลมาจากกระบวนการปฏิบัติที่แตกต่างกันมาให้กับการปลูกข้าว มีการสูงขึ้นแบบจำลองในการดันคิดความหลากหลายของข้าวชนิด-วี้
การศึกษาการเปลี่ยนแปลงระยะยาวของการปล่อยก๊าซเรือนกระจก (CH4 และ N2O) และปริมาณคาร์บอหนดในดิน (SOC) จากวิธีปลูกข้าวตามมาตรฐานสองวิธี (แบบอินทรีย์และแบบดั้งเดิม) โดยใช้แบบจำลอง Denitrification-Decomposition (DNDC) มีตัวแปรตามที่อธิบายไว้ข้างต้น เนื่องจากพื้นที่ที่ศึกษามีระบบชลประทาน จึงไม่ได้ทำการตรวจสอบวิธีการการปล่อยก๊าซมีเทนอย่างวิธีการแบบเปียกสลับแห้ง (AWD: Alternative Wetting and Drying) ซึ่งแบบจำลอง DNDC ไม่ครอบคลุมถึงการปล่อยก๊าซเรือนกระจกระยะที่จะปล่อยออกมาจากการเผาไหม้หลังการเก็บเกี่ยว ดังนั้น การปล่อยก๊าซเหล่านี้จึงถูกประเมินโดยใช้วิธีที่เสนอโดย Jonpen, et al. (2018)

การปล่อยก๊าซเรือนกระจกโดยเฉลี่ยจากการเผาฟางข้าวในการผลิตข้าวแบบดั้งเดิมเท่ากับ 0.19 ตันของคาร์บอนไดออกไซด์เทียบเท่าต่อเฮกตาร์ต่อปี โดยพบว่าการปลูกข้าวแบบอินทรีย์ไม่มีการปล่อยก๊าซเรือนกระจกจากการเผาฟางข้าว

ในส่วนที่เกี่ยวข้องกับการปล่อยมลพิษจากขั้นตอนการเพาะปลูก การปลูกแบบอินทรีย์จะปล่อยก๊าซเรือนกระจกมากกว่าการปลูกแบบดั้งเดิมเล็กน้อย กล่าวคือ เราพบว่าการปลูกข้าวแบบดั้งเดิมปล่อยก๊าซเรือนกระจกจากอินทรีเสี้ยน 14.59 ตันของคาร์บอนไดออกไซด์ต่อเนื่องที่ต่อต่าง 15.54 ตันของคาร์บอนไดออกไซด์ต่อเนื่องที่ต่อต่าง 5 ในขณะที่การปลูกข้าวแบบอินทรีย์ปล่อยก๊าซเรือนกระจกในดินได้มากกว่าเมื่อเรียกเก็บการปลูกแบบตัวเต็ม ดังนั้นปริมาณคาร์บอนไดออกไซด์จากที่เกิดจากการปลูกข้าวแบบอินทรีย์คือ 42.46 ตันของคาร์บอนไดออกไซด์ต่อเนื่องที่ต่อต่าง และการปลูกข้าวแบบดั้งเดิมอยู่ที่ 38 ตันของคาร์บอนไดออกไซด์ต่อเนื่องที่ต่อต่าง

เมื่อรวมแหล่งที่มาของการปล่อยก๊าซเรือนกระจกและการกักเก็บก๊าซทั้งสามแหล่งเข้าด้วยกัน การปลูกข้าวแบบอินทรีย์จะปล่อยก๊าซเรือนกระจกต่ำกว่าการปลูกข้าวแบบตัวเต็ม แม้การทบทวนนี้ได้รับการ

3 แปลงส่วนใหญ่ในภาคตะวันออกเฉียงเหนือไม่สามารถรับรู้ปริมาณน้อยไม่สามารถขึ้นทะเบียนระบบชลประทานได้ จึงต้องอาศัยคำนวณตามระบบที่แตกต่างกัน บนพื้นที่มีการเก็บกักสูงถึง 100 บัตรแม่สีดีสุดว่ามีต่ำอย่างต่อเนื่อง

4 การปล่อยก๊าซเรือนกระจกจากการเผาฟางข้าวคำนวณตามหลักเกณฑ์ IPCC ปี พ.ศ. 2549 เทปที่ 2 สำหรับการจัดท่าบัญชีก๊าซเรือนกระจกแบบจำลอง ซึ่งนิยาม CO2 ในการคำนวณ (Eggleston, H. S., et al., 2006)

5 สิ่งที่ค้นพบเกี่ยวกับการปล่อยก๊าซเรือนกระจกจากการเผาฟางข้าวในศึกษาที่มีความคลาดเคลื่อนกับข้อมูลการสังเกตการณ์ภาคสนามอื่น ๆ ที่รายงานในประเทศไทย (Pengthamkeerati et al., 2011) อาจเกิดขึ้นเนื่องจากการไม่ใช้กับระดับประเทศ สำหรับการจัดท่าบัญชีเป็นมั่นว่าการปล่อยก๊าซเรือนกระจกจากการเผาฟางข้าวจะมีผลต่อก๊าซเรือนกระจกโดยรวมในการพูดข้างต้นสูงกว่าที่มีผลต่อก๊าซเรือนกระจกในรายงาน Biennial Update Report (BUR3) ฉบับที่ 3 ของประเทศไทย วิธีการประเมินและปัจจัย GWP สำหรับก๊าซเรือนกระจก โดยใช้ผลต่อต่างจากที่ต่ำมากกว่าในรายงาน IPCC ปี 2549 และปรับใช้การปล่อยก๊าซเรือนกระจกในรายงาน AR4 (AR4) การปล่อยมลพิษในรายงานนี้เรียกโดยแบบจำลองที่เรียกสรรพสิ่งมีชีวิตสอดคล้องกับข้อมูลสภาพอากาศในปี
4.3 ผลกระทบภายนอกด้านสุขภาพ – การเปลี่ยนแปลงทุนมนุษย์

ในส่วนของทุนมนุษย์ ได้มีการสำรวจผลกระทบต่อสุขภาพของมนุษย์จากพิษของยาฆ่าแมลงและผลกระทบจากอากาศจากการปลูกข้าวแบบดั้งเดิมและแบบอินทรีย์

แม้สภาพภูมิอากาศจะถูกเดินทางมาในการปลูกข้าวแบบอินทรีย์ แต่สภาวะภูมิอากาศที่มีผลต่อการปลูกข้าวแบบอินทรีย์ แต่สภาวะภูมิอากาศที่มีผลต่อการปลูกข้าวแบบดั้งเดิมโดยทั่วไป ในการประเมิน TEEBAgriFood ได้วิเคราะห์ข้อมูลจากการสำรวจสภาพสนามผลผลิตที่มีความเสี่ยงที่จะเกิดขึ้นป่วยเนื่องจากพิษของยาฆ่าแมลงที่เกษตรกรผู้ปลูกข้าวแบบดั้งเดิมจะต้องเผชิญหน้ากับการปลูกข้าวแบบอินทรีย์อย่างมีผลสำคัญ ด้วยการใช้ข้อมูลจากโครงการพยาบาลโดยเฉลี่ยต่อราย อันเป็นผลจากพิษของยาฆ่าแมลงจากการสำรวจข้อมูล 13 เครืออุตสาหกรรมดูถูกภาพจากปลูก โดยรวมทั้งหมดแล้ว อุคหที่ประมาณ 1.17 เหรียญสหรัฐดีต่อสุขภาพต่อปีสำหรับเกษตรกรผู้ปลูกข้าวแบบดั้งเดิม

ผลกระทบต่อสุขภาพที่เกิดขึ้นเป็นผลกระทบต่อสุขภาพขั้นต่ำที่สามารถสังเกตเห็นได้และนำมาซึ่งการฟื้นฟูที่รวดเร็ว อย่างไรก็ตาม ผลกระทบระยะยาวของยาฆ่าแมลงที่อาจก่อให้เกิดโรคเรื้อรังซึ่งอาจส่งผลกระทบต่อวัยรุ่น ในเชื้อแบบที่ระบุมาที่สูงที่สุดต่อวัยรุ่นใน เช่น ตับและระบบประสาท ซึ่งอาจส่งผลให้เกิดการเจ็บป่วยร้ายแรงหรือเสียชีวิตในอนาคต ไม่สามารถระยะเวลาจากข้อมูลการสำรวจทดลองเพียงเล็กน้อย ดังนั้น เพื่อให้ครอบคลุมถึงผลกระทบที่มองไม่เห็นและผลกระทบระยะยาวจากการเกษตรดั้งเดิม ที่มีวิจัยได้ใช้วิธีการทดสอบเพื่อหาความซับซ้อนของการเปลี่ยนแปลงต่อการเปลี่ยนแปลงอันเกิดจากพิษของสารภูมิอากาศที่มีผลกระทบต่อการเปลี่ยนแปลงของเกษตรกร การตอบสนองของเกษตรกรในการสำรวจแบบทางเลือกได้รับการประเมินโดยใช้แนวคิดแบบมูลค่าชีวิตจริงสดสิทธิ์ (VSL: Value of Statistical Life) เพื่อรับผิดชอบต่อความเสี่ยงต่อการเสียชีวิตที่เกิดจากพิษของยาฆ่าแมลงต่อปี ประมาณ 251.67 เหรียญสหรัฐดีต่อเกษตรกร ผลที่ได้ถูกใช้สำหรับการประเมินสถานการณ์จำลองต่อการเจริญเติบโต

การฟื้นฟู ผลกระทบต่อสุขภาพจากการสัมผัสกับฝุ่นละออง (อนุภาคในอากาศที่มีมวลผ่านศูนย์กลางน้อยกว่า 2.5 มิลลิเมตร หรือ PM2.5) ถูกวิจัยและวิเคราะห์ว่ามีสูญเสียเพียงร่างกายผู้สูญเสียชีวิตและพลังงานที่สูญเสียชีวิต การคำนวณได้จากการศึกษาโดย Junpen et al. (2018) ซึ่งใช้วิธีการวิเคราะห์ผลกระทบต่อสุขภาพจากการสัมผัสกับฝุ่นละออง ที่มีผลกระทบต่อสุขภาพจากการสัมผัสกับฝุ่นละออง ที่มีผลกระทบต่อสุขภาพจากการสัมผัสกับฝุ่นละอ
มักใช้ในการประเมินการสูญเสียทุนมนุษย์ที่เกิดจากมลพิษทางอากาศ โดยถือว่าทุนมนุษย์เป็นทุนที่เกิดประโยชน์ต่อสังคมทั่วทั้งหมด มูลค่าทางเศรษฐกิจของการสูญเสียทุนมนุษย์ได้รับการประเมินโดยการประมาณผลกระทบต่อสุขภาพของ PM2.5 จากการเผาแตร์เพื่อประเมินผลกระทบภายนอกในเชิงบวกต่อสังคม ค่าใช้จ่ายด้านสุขภาพจากการเสี่ยงต่อการสูญเสียทุนมนุษย์ได้รับการประเมินโดยการประมาณผลกระทบต่อสุขภาพของ PM2.5 จากการเผาแตร์ในปี 2562 ค่านวณได้ถึง 17.3 เหรียญสหรัฐดอลลาร์ต่อตันทุนมนุษย์ที่เสียหายจากการเผาแตร์ ต้นทุนทางเศรษฐกิจของการสูญเสียทุนมนุษย์เกิดจากการเผาแตร์ในปี 2562 ค่านวณได้ถึง 17.3 เหรียญสหรัฐดอลลาร์ต่อตันทุนมนุษย์ที่เสียหายจากการเผาแตร์

4.5 อื่น ๆ - รายจ่ายของวัตถุประสงค์

ประเทศไทยได้ดำเนินการตามข้อตกลงและนโยบายข้อตกลงเพื่อส่งเสริมการเกษตรอินทรีย์มาตั้งแต่ปี 2560 ภายใต้นโยบายของประเทศไทย 4.0 การทำาข้าวอินทรีย์สานInterpolatorเป็นหนึ่งในข้อตกลงในข้อตกลงเพื่อส่งเสริมการเกษตรอินทรีย์ วัตถุประสงค์หลักของการดำเนินการก็เพื่อส่งเสริมการผลิตข้าวอินทรีย์ตามมาตรฐานของเกษตรกรข้าว และเพิ่มพื้นที่
เหมาะสมในการผลิตข้าวอินทรีย์ที่มีคุณสมบัติตามใบรับรองมาตรฐานเกษตรอินทรีย์ โดยเกษตรกรที่ผ่านการรับรองจะได้รับการสนับสนุนด้านเงินทุนเป็นจำนวน 2,000 – 4,000 บาทต่อไร่ต่อปีเป็นเวลา 3 ปี นอกจากนี้ผู้ปลูกข้าวในบริการส่งเสริมการเกษตรเพื่อเพิ่มผลผลิตข้าว ส่งเสริมการวิจัยและพัฒนาข้าว และสนับสนุนโครงการโบราณข้าวอินทรีย์ และรัฐบาลยังสร้างโอกาสในการสนับสนุนการลงทุน และคำนวณในข้อกำหนดการให้กับเกษตรกรอินทรีย์ มีนโยบายเพื่อกิจการเกษตรและส่งเสริมการเกษตร (ธ. ก.ส.) ซึ่งส่วนหนึ่งเป็นเงินทุนโดยกระทรวงการคลัง ที่ให้บริการเงินกู้ดอกเบี้ยต่ำสำหรับเกษตรกรผู้ปลูกข้าวอินทรีย์ที่ผ่านการรับรอง

5. การประเมินค่าและการวิเคราะห์สถานการณ์จำาลอง

มาตรการที่สามารถจัดตั้งเป็นที่สอดคล้องกัน ซึ่งรวมไปถึงผลผลิตข้าวต่อไร่ ได้แก่การปลูกข้าว ความหลากหลายทางชีวภาพ การปลูกข้าวในโอกาสแรก และผลการเกษตรต่อสุขภาพ ได้ถูกนำมูลค่าให้เข้าไปในรูปแบบเงินสิ่งที่เข้าไปในการคำนวณผลประโยชน์เพิ่มขึ้นด้วยเพื่อการสนับสนุนการเกษตร โดยการเกษตรและโดยยึดข้อมูลของการเปลี่ยนแปลงที่เกิดขึ้นแบบตัดสินใจแบบอินทรีย์

ในการประเมินผลกระทบที่แท้จริงกับการปลูกข้าว ยังไม่สามารถใช้ตัวแทนการเงินที่แตกต่างกันต่างแสดงในตารางที่ 1 สำหรับมูลค่าการผลิตข้าวจะใช้ราคาเฉลี่ยของข้าวขาวตั้งแต่ปี 2535 ถึง 2563 เฉลี่ย 328 เหรียญสหรัฐฯต่อตัน (Bank of Thailand, 2020) ความแตกต่างของต้นทุนระหว่างข้าวธรรมดาและข้าวอินทรีย์ได้รับการพิจารณาข้างหลังทำการสำรวจครัวเรือน ซึ่งแสดงให้เห็นว่าต้นทุนการปลูกข้าวอินทรีย์สูงกว่าต้นทุนของการปลูกข้าวธรรมดาประมาณ 20.83 เหรียญสหรัฐฯต่อตันต่อปีเนื่องจากค่าปุ๋ยเคมีและยาฆ่าแมลงมีการปรับตัวซึ่งในภาคการปลูกข้าวอินทรีย์มีข้อห้ามการใช้สารเคมีและยาฆ่าแมลงมีการปรับตัวสู่แบบตะลุย ซึ่งในข้อพิจารณาข้างต้นข้าวธรรมดาอินทรีย์จะไม่ได้รับผลกระทบจากเกษตรกรแบบตัดสินใจเมื่อมีการใช้ยาฆ่าแมลงเพื่อกำจัดศัตรูพืชขึ้นแบบต้นทุนของยาฆ่าแมลงนี้มีประโยชน์หรือประโยชน์ของความหลากหลายทางชีวภาพที่เกิดจากการทำเกษตรอินทรีย์

การวิเคราะห์ข้างต้นไม่ได้คำนวณต้นทุนของการเปลี่ยนแปลงผลผลิตแบบตัดสินใจแบบอินทรีย์ ซึ่งจ้าเป็นต้นเมื่อมีการสร้างแนวคิดที่ต้องการวางแผนการเปลี่ยนแปลงรูปแบบการปลูกข้าวอินทรีย์ ซึ่งไม่สามารถใช้สำหรับการเข้าเมื่อต้นทุนของการเปลี่ยนแปลงแบบตัดสินใจแบบอินทรีย์ แต่จะต้องคำนวณครัวเรือนค่าใช้จ่ายในการเปลี่ยนแปลงโดยเฉลี่ยสำหรับการเปลี่ยนแปลงที่ต้นทุนการเปลี่ยนแปลงที่ต้นทุนอยู่ที่ประมาณ 114.58 เหรียญสหรัฐฯต่อตันต่อการเปลี่ยนแปลงจากเกษตรกรรมแบบตัดสินใจแบบอินทรีย์

มูลค่าการปลูกข้าวอินทรีย์จำาลองคำนวณจากราคาเฉลี่ยของคาร์บอนดีออกซิไดที่วาระปี 2559-2563 ที่รายงานโดยองค์การบริหารจัดการก๊าซเรือนกระจก (Thailand Greenhouse Gas Management Organization) (2020) อยู่ที่ 1.67 เหรียญสหรัฐฯต่อตันคาร์บอนดีออกซิไดที่เทียบเท่า โปรดสังเกตว่าราคา
ตั้งแต่การเป็นการวัดค่าในรูปตัวเงินชั้นต่ำตามราคาตลาดในปัจจุบัน ในขณะที่ราคาคาร์บอนเฉลี่ยของตลาดสดอยู่ที่ประมาณ 3-5 เหรียญสหรัฐฯต่อน้ำมันโดยรอบในปี 2021 และที่ระดับการประเมินตามแนวทางของ AHC ซึ่งมีการสูญเสียผลิตภาพของมนุษย์ซึ่งสูญเสียเปรียบกับราคาตลาดโดยรวมต่อฝั่งของจังหวัด และสูญเสียมูลค่าชีวิตเชิงสถิติ (VSL) ของการลดความเสี่ยงต่อการเสียชีวิตจากพิษของสารก่อก่อภัยพื้นที่ที่คำนวณได้จากวิธีการทดลองแบบทั่วโลกได้ถูกนำมาใช้เพื่อประโยชน์ต่อสุขภาพเนื่องจากไม่มีความเสี่ยงจากการจัดสรรผลประโยชน์ในทางอินเทอร์นิย์ ต้นทุน VSL อยู่ที่ 251.67 เหรียญสหรัฐฯ ต่อสุทธิของชีวิตต่อปี

ผลภำพเหล่าจะถูกบันทึกปีต่อปีโดยพิจารณาจากการเปลี่ยนแปลงพื้นที่การปลูกจากแบบดั้งเดิมเป็นแบบอินเทอร์นิย์ในแต่ละสถานการณ์จำลอง ทั้ง BAU, S2, S3 และ S4 มูลค่าเหล่านี้จะถูกแปลงเป็นมูลค่า

ตารางที่ 1 ตัวแทนการเงิน (Monetary Proxies) ต่อหน่วยการวัด

<table>
<thead>
<tr>
<th>การวัด (Measure)</th>
<th>มิติ (Dimension)</th>
<th>ตัวแทนการเงิน (Monetary proxy)</th>
<th>หน่วย (Unit)</th>
<th>มูลค่า USD (Value USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>การผลิตข้าว</td>
<td>ด้านการเงิน</td>
<td>ราคา</td>
<td>$/ตัน</td>
<td>328</td>
</tr>
<tr>
<td>ประโยชน์ของการประกอบดินทุบ</td>
<td>ด้านการเงิน</td>
<td>ค่าปลูกเมล็ดพันธุ์</td>
<td>$/เซกตรัม</td>
<td>4.16</td>
</tr>
<tr>
<td>ปลูกข้าวเพื่อประโยชน์</td>
<td>ด้านการเงิน</td>
<td>ค่าเพาะปลูก</td>
<td>$/เซกตรัม</td>
<td>16.67</td>
</tr>
<tr>
<td>ปลูกข้าวเพื่อค่าปลูกเมล็ดพันธุ์</td>
<td>ด้านการเงิน</td>
<td>ค่าปลูกเมล็ดพันธุ์</td>
<td>$/เซกตรัม</td>
<td>114.58</td>
</tr>
<tr>
<td>การปลูกข้าวเพื่อค่าปลูกเมล็ดพันธุ์</td>
<td>ด้านการเงิน</td>
<td>ค่าปลูกเมล็ดพันธุ์</td>
<td>$/เซกตรัม</td>
<td>251.67</td>
</tr>
<tr>
<td>การผลิตข้าวเพื่อค่าปลูกเมล็ดพันธุ์</td>
<td>ด้านการเงิน</td>
<td>ค่าปลูกเมล็ดพันธุ์</td>
<td>$/เซกตรัม</td>
<td>251.67</td>
</tr>
</tbody>
</table>

ผลระยะสุดท้ายจะถูกบันทึกโดยพิจารณาจากการเปลี่ยนแปลงพื้นที่การปลูกจากแบบตั้งเต็มเป็นแบบอินเทอร์นิย์ในแต่ละสถานการณ์จำลอง ทั้ง BAU, S2, S3 และ S4 มูลค่าเหล่านี้จะถูกแปลงเป็นมูลค่า

*ไม่มีตลาดกลางสำหรับคาร์บอนในประเทศไทย องค์การบริหารจัดการก๊าซเรือนกระจก (TGO: Thai Greenhouse Management Organization) ได้จัดทำโครงการลดก๊าซเรือนกระจกโดยลงนามในมาตรฐานของประเทศไทย (T-VER: Thailand Voluntary Emissions Reductions) ซึ่งการแลกเปลี่ยนการลดก๊าซเรือนกระจกนั้นได้รับความเสียหายมากที่สุดจากการเปลี่ยนแปลง T-VER สามารถซื้อและขายได้ผ่านการพิจารณาของตลาดคาร์บอนที่มีการวิธีการลดก๊าซเรือนกระจกตามแนวทางของประเทศไทย ได้ถูกโอนไปยังผู้ที่ต้องการลดการปล่อยคาร์บอน (บริษัท ข) และเนื่องจากราคาคาร์บอนในตลาดมีจุดขั้นต่ำ ราคาคาร์บอนในประเทศไทยปัจจุบันเรียกอยู่ในระดับต่ำเนื่องจากวิธีการลดก๊าซเรือนกระจกในตลาดต่างประเทศ
ปัจจุบันสุทธิ (NPV: Net Present Value) โดยใช้ตารางคิดตั้งแต่ปี 2562 ก้าวไปถึงปี 2578 ค่า NPV แสดงถึงการเปลี่ยนแปลงมูลค่าสะสมที่คาดว่าจะเกิดขึ้นภายใน 17 ปี อันเป็นผลจากการเปลี่ยนแปลงแบบที่คืนในสถานการณ์จังหวัดที่ 2, 3 และ 4 เมื่อเทียบกับสถานการณ์จังหวัดแบบ BAU. ผลประโยชน์และต้นทุนที่เกิดขึ้นในสถานการณ์จังหวัดแบบ BAU ได้เป็นข้อมูลอ้างอิงเพื่อวัดและเปรียบเทียบการเปลี่ยนแปลงต่างๆในการวิเคราะห์ในสถานการณ์จังหวัดที่ 2 สถานการณ์จังหวัดที่ 3 และสถานการณ์จังหวัดที่ 4 ผลลัพธ์ที่ได้เอื้อให้เห็นการประเมินมูลค่าดังกล่าวโดยประมาณของผลประโยชน์สูงสุดและต้นทุนที่เกิดขึ้นหลังเปลี่ยนแปลงพื้นที่จากการปลูกข้าวแบบต่างๆและเป็นผลเอื้อให้สถานการณ์จังหวัดที่ 2, 3 และ 4 เมื่อเทียบเทียบกับสถานการณ์จังหวัดแบบ BAU รูปที่ 7 แสดงขอบเขตสูงสุดของการขยายพื้นที่ปลูกข้าวอินทรีย์ในแต่ละสถานการณ์ภายในปี 2578 โดยพื้นที่ข้าวอินทรีย์คือ 173,027 เฮกตาร์ 640,000 เฮกตาร์ 2,400,000 เฮกตาร์ และ 5,120,000 เฮกตาร์ภายใน BAU, S2, S3 และ S4 ตามลำดับ.

รูปที่ 7 การขยายตัวของข้าวอินทรีย์ในแต่ละสถานการณ์จังหวัด ในปี 2578

5.1 ผลการวิเคราะห์สถานการณ์จังหวัด

ตามที่ได้อธิบายไว้ข้างต้น เพื่อรับผิดชอบทางตรงและทางอ้อมจากการเปลี่ยนแปลงพื้นที่ปลูกข้าวแบบต่างๆเป็นแบบอินทรีย์ การเปลี่ยนแปลงของผลผลิตของแต่ละสถานการณ์เมื่อเทียบกับ BAU ได้รับการสิ่งที่ต้องชมโดยใช้ตัวแทนทางการเงิน (monetary proxies) ที่แสดงไว้ในตารางที่ 1 ประกอบโดยการใช้ผลผลิตข้าว (monetary proxies) ที่แสดงไว้ในตารางที่ 1 ประกอบโดยการวิเคราะห์ผลผลิตข้าว (monetary proxies) ที่แสดงไว้ในตารางที่ 1.

ในช่วงปี 2562 ก้าวไปถึงปี 2578 สถานการณ์จังหวัดแบบ BAU คาดว่าจะได้ผลผลิตข้าว 262 ล้านตัน ซึ่งสูงกว่าในสถานการณ์จังหวัด S4 ที่คาดว่าจะได้ผลผลิต 259 ล้านตัน ที่ได้ผลก็คือเมื่อเทียบกับการปลูกข้าวแบบต่างๆและเปรียบเทียบผลผลิตสูงกว่าการปลูกข้าวแบบอินทรีย์เล็กน้อย โดยเฉลี่ย 2.33 ตันต่อเลขการและ 2.27 ตันต่อเลขการตามลำดับ หรือต่างกันประมาณ 0.06 ตันต่อเลขการต่อปี ผลผลิตจะแตกต่างกันไปตามปีจึงด้าน
สภาพอากาศตลอดจนแนวทางในการใช้ที่ดิน ส่งผลให้ผลผลิตข้าวในปี พ.ศ. 2573 คาดว่าจะอยู่ในระดับต่ำสำหรับสถานการณ์จ้าลองที่ 4 เมื่อเทียบกับสถานการณ์จ้าลองอื่นและเมื่อเทียบกับปี 2572 นั้นเป็นผลมาจากฝนตกหนักในปีนั้น อย่างไรก็ตาม ในอีก 5 ปีต่อมา คาดว่าสถานการณ์จ้าลองที่ 4 จะให้ผลผลิตมากกว่าสถานการณ์จ้าลองแบบ BAU ในปี 2578 อย่างไรก็ตาม ความห่วงค้านันสุขภาพจากการใช้สารเคมีก้าจัดศัตรูพืชและการสัมผัสกับ PM 2.5 จากการเผาข้าวอาจเป็นผลกระทบนายกขับเคลื่อนต่อสุขภาพที่สำคัญของการผลิตข้าวแบบต้นเดิม อีกทั้งยังเป็นการปล่อยก๊าซเรือนกระจกจากจ้าลองการปลูกข้าวแบบอินทรีย์ เนื่องจากความสามารถในการกักเก็บคาร์บอนในดินต่ำกว่าและมีการปล่อยก๊าซเรือนกระจกที่ต่ำเมื่อจากการเผาการเก็บเกี่ยว ผลการทดสอบสำนักงานมูลค่าสะสมตั้งแต่ปี 2562 ถึง 2578 ให้เป็นมูลค่าปัจจุบันในแต่ละสถานการณ์จ้าลอง ผลการทดสอบการขยายตัวของจ้าลองอินทรีย์ถูกคำนวณเป็นมูลค่าดังแสดงไว้ด้านล่างโดยอิงจากการประเมินความแตกต่างในมูลค่าปัจจุบันสุทธิของต้นทุนและผลประโยชน์ที่เกิดขึ้นจากแต่ละสถานการณ์จ้าลองเมื่อเทียบกับ BAU มูลค่าโดยรวม: ผลกระทบของการขยายการผลิตข้าวอินทรีย์ จากการประเมินโดยพิจารณาทั้ง 3 มิติ ได้ผลลัพธ์โดยรวมคือ ยิ่งพื้นที่ปลูกข้าวอินทรีย์มีมากขึ้นเท่าไรก็ยิ่งมีคุณประโยชน์มากขึ้นเท่านั้น โดยสถานการณ์จ้าลองที่ 4 (S4) ได้ให้ผลประโยชน์โดยรวมสูงสุดของการผลิตข้าวซึ่งคิดเป็นมูลค่าสะสมเพิ่มเติมทั้งหมด 3,774 ล้านเหรียญสหรัฐฯ สำหรับรัฐสิ้นปี 2562 ถึง 2578 อันเป็นผลมาจากข้าวขยายตัวของการปลูกข้าวแบบอินทรีย์อย่างกว้างขวางตามสภาพการเปลี่ยนแปลงนี้ตามมติด้วยสถานการณ์จ้าลองที่ 3 (S3) และสถานการณ์จ้าลองที่ 2 (S2) ซึ่งสร้างรายได้ 1,761 ล้านเหรียญสหรัฐฯ และ 410 ล้านเหรียญสหรัฐฯ ตามลำดับ เมื่อเทียบกับ BAU ดังแสดงในรูปที่ 8 ผลประโยชน์ของมูลค่าในอนาคตเหล่านี้แสดงไว้ที่ในส่วนของผลกระทบทั้งหมด โดยกลุ่มต่าง ๆ จะได้รับผลประโยชน์รวมถึงเกษตรกร (เช่น ประโยชน์จากความเสี่ยงที่ลดลง) และประชาชน (เช่น ประโยชน์จากค่าใช้จ่ายในการรักษาสุขภาพที่ลดลง)ประชาคมระหว่างประเทศ (เช่น ประโยชน์จากการปล่อยก๊าซเรือนกระจกที่ลดลง)
รูปที่ 8 กำหนดสมุทร์จากกราฟขอบบนที่เกษตรอินทรีย์ตั้งแต่ปี 2562 ถึง 2578 ในแต่ละสถานการณ์จำลองเทียบกับ BAU

NPV: ALL IMPACT

<table>
<thead>
<tr>
<th>สถานการณ์</th>
<th>NPV (ล้านดอลลาร์สหรัฐ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>1,761</td>
</tr>
<tr>
<td>S3</td>
<td>3,774</td>
</tr>
<tr>
<td>S4</td>
<td>1,761</td>
</tr>
</tbody>
</table>

หมายเหตุ: การเปลี่ยนแปลงของมูลค่าที่ถูกวัดแบบสะสมในช่วงปี 2562-2578 และแปลงเป็นมูลค่าปัจจุบันสุทธิด้วยอัตราคิดลด 5%
หน่วย: ล้านดอลลาร์สหรัฐ

ข้อมูลด้านล่างแสดงมูลค่าปัจจุบันสุทธิของผลประโยชน์และต้นทุนสะสมทั้งหมดตามมิติที่ได้จากการขยายพื้นที่ข้าวอินทรีย์ของสถานการณ์จำลองที่ 2 สถานการณ์จำลองที่ 3 และสถานการณ์จำลองที่ 4 เทียบกับ BAU มีการปรับเหตุผลให้เกิดผลประโยชน์สุทธิสะสมจากการขยายพื้นที่ข้าวอินทรีย์ทำให้เกิดผลประโยชน์สุทธิสะสมจากการขยายพื้นที่ข้าวอินทรีย์ที่สูงขึ้นในสถานการณ์จำลองที่ 2 (S2) มีมูลค่าตัวแทน 438 ล้านดอลลาร์สหรัฐ ในสถานการณ์จำลองที่ 3 (S3) มีมูลค่า 1,761 ล้านดอลลาร์สหรัฐ ในสถานการณ์จำลองที่ 4 (S4) มีมูลค่า 3,774 ล้านดอลลาร์สหรัฐ คิดเป็นมูลค่าส่วนต่าง 2 ล้านดอลลาร์สหรัฐในสถานการณ์จำลองที่ 2 (S2) มี 16 ล้านดอลลาร์สหรัฐ ในสถานการณ์ที่ 4 (S4) ในทางกลับกันการขยายพื้นที่ปลูกข้าวอินทรีย์ทำให้เกิดการขาดทุนสุทธิ (หรือต้นทุน)ของรายได้และต้นทุนของการผลิตข้าว การขยายพื้นที่ปลูกข้าวอินทรีย์ตามสถานการณ์จำลองที่ 2 สถานการณ์จำลองที่ 3 และสถานการณ์จำลองที่ 4 เมื่อเทียบกับ BAU ทำให้เกิดผลขาดทุนสุทธิในมิติดังนี้ตัวแปร S2 จำนวนเหตุผลประโยชน์สุทธิ (S2) ได้เป็น 389 ล้านดอลลาร์สหรัฐ (S4) ข้อมูลที่ให้ไว้ในรูปที่ 8 และ 8a นำมาบอกความรวมของผลกระทบของการเปลี่ยนแปลงการใช้ที่ดินที่แตกต่างกันภายใต้สถานการณ์จำลองที่ 2 สถานการณ์จำลองที่ 3 และสถานการณ์จำลองที่ 4 เมื่อเปรียบเทียบกับ BAU ในเรื่องผลกระทบโดยรวมและในแต่ละมิติตามด้านในเพื่อให้เข้าใจสถานการณ์ได้ดีขึ้นและระบุถึงสิ่งที่ต้องคำนวณถึงการเปลี่ยนแปลงการใช้ที่ดินที่แตกต่างกันต่อไปจะเป็นการนำเสนอรายละเอียดถึงผลผลกระทบจากการเปลี่ยนแปลงการใช้ที่ดินภายใต้สถานการณ์ต่าง ๆ เทียบกับ BAU ในแต่ละมิติ
รูปที่ 8: ผลประโยชน์และต้นทุนสะสมของการขยายพื้นที่ปลูกข้าวอินทรีย์ในแต่ละมิติตั้งแต่ปี 2562 ถึง 2578 ในแต่ละสถานการณ์จำลอง เปรียบเทียบกับ BAU

หมายเหตุ: การเปลี่ยนแปลงของมูลค่า เป็นการวัดแบบสะสมในช่วงปี 2562-2578 และแปลงเป็นมูลค่าปัจจุบันสุทธิด้วยอัตราคิดลด 5%
หน่วย: ล้านดอลลาร์สหรัฐ

มูลค่าในมิติการผลิต: รายได้และต้นทุนการผลิตข้าว

มิติประกอบด้วยการเปลี่ยนแปลงมูลค่าของผลผลิตข้าวอินทรีย์และข้าวธรรมดามารวิมกัน (ประโยชน์ต่อการตระหนักและการผลิตอาหาร) ต้นทุนการเกษตรหลักซึ่งเป็นการเปลี่ยนแปลงในค่าใช้จ่ายเพื่อซื้อปุ๋ยและยาฆ่าแมลง ตลอดจนต้นทุนการจัดการที่ดินเพื่อเปลี่ยนจากการปลูกข้าวแบบก้าวหน้าเป็นแบบอินทรีย์

สำหรับรายได้สุทธิจากข้าว ในช่วงปี 2562-2578 สถานการณ์ BAU คาดว่าจะสร้างรายได้รวมประมาณ 5.7 หมื่นล้านเหรียญสหรัฐในมูลค่าปัจจุบันสุทธิโดยใช้อัตราคิดลด 5% รูปที่ 9 แสดงรายละเอียดของรายได้และต้นทุนการผลิตของแต่ละสถานการณ์จำลองเทียบกับ BAU

ตามที่ระบุไว้ในส่วนที่แล้ว การศึกษานี้คาดการณ์ว่ามีการสูญเสียเพียงเล็กน้อยในช่วงระยะเวลา 17 ปีในแจ้งของปริมาณผลผลิตข้าว ซึ่งเป็นผลมาจากการใช้สถานการณ์จำลองที่เกี่ยวข้องกับ BAU เมื่อประเมินมูลค่าในรูปดั่งเดิม การสูญเสียผลผลิตในช่วงเวลาที่เกิดเป็นการสูญเสียสะสมประมาณ 476 ล้านเหรียญสหรัฐภายในปี 2578 ในสถานการณ์จำลองที่สี่ (S4) เมื่อเทียบกับ BAU นอกจากนี้ ต้นทุนของการปรับเปลี่ยนที่ดินให้เป็นพื้นที่เกษตรอินทรีย์คาดว่าจะสูงมาก อีกทั้งเปลี่ยนพื้นที่ปลูกข้าวธรรมดาเป็นพื้นที่เกษตรอินทรีย์มากขึ้นทำให้เกิดต้นทุนสะสมสูงขึ้นเท่านั้น สถานการณ์จำลองที่ 4 ซึ่งมีการแปลงที่ดินเป็นพื้นที่เกษตรอินทรีย์มากที่สุด ได้คาดการณ์ต้นทุนในการแปลงที่ดินสะสมไว้สูงสุด ประมาณ 350 ล้านเหรียญสหรัฐสำหรับปี 2562-2578 ในมูลค่าปัจจุบันสุทธิ

อย่างไรก็ตามการขยายพื้นที่ปลูกข้าวอินทรีย์ก็เกิดผลตอบแทนเชิงบวกแก่เกษตรกรในแง่ของการลดต้นทุนการเกษตร บวกกับการลดค่าใช้จ่ายด้านยาฆ่าแมลง (350 ล้านเหรียญสหรัฐ) และปุ๋ยเคมี (87 ล้านเหรียญสหรัฐ) ในสถานการณ์จำลองที่ 4
รูปที่ 9 มิติการผลิต: ต้นทุนสะสมและผลประโยชน์ทั้งหมดตั้งแต่ปี 2562 ถึง 2578 ในแต่ละสถานการณ์จำลองเทียบกับ BAU

<table>
<thead>
<tr>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(42)</td>
<td>(34)</td>
<td>(196)</td>
</tr>
<tr>
<td>(196)</td>
<td>(156)</td>
<td>(476)</td>
</tr>
</tbody>
</table>

หมายเหตุ: ตัวเลขในวงเล็บแสดงเป็นมูลค่าปัจจุบันสุทธิในอัตราคิดลด 5%

เมื่อนำการเปลี่ยนแปลงของมูลค่าผลผลิตข้าวและต้นทุนการเพาะปลูกรวมกัน (ตั้งแต่แสดงในรูปที่ 10) พบว่าตลอดระยะเวลาที่ประเมิน การขยายตัวของข้าวอินทรีย์ที่คาดการณ์ไว้จะก่อให้เกิดการขาดทุนในมิตินี้ การประหยัดต้นทุนจากการปลูกข้าวอินทรีย์ไม่สามารถลดผลกระทบต่อรายได้ที่สูญเสียไปได้ทั้งหมด ดังนั้นสถานการณ์จำลองที่ 4 จึงแสดงถึงผลขาดทุนสุทธิสะสมสูงสุดในมิตินี้เมื่อเทียบกับ BAU ซึ่งมีมูลค่ารวม 389 ล้านเหรียญสหรัฐระหว่างปี 2562-2578 รูปแบบเดียวกันนี้มีเกิดขึ้นกับสถานการณ์จำลองที่ 2 และ 3 ซึ่งมีผลขาดทุนสูงถึงปีที่ 29 ล้านเหรียญสหรัฐฯ และ 160 ล้านเหรียญสหรัฐฯ ตามลำดับ เมื่อเทียบกับ BAU

รูปที่ 10 การขาดทุนสะสมทั้งหมดในรายรับ และต้นทุนของมิติการผลิตในแต่ละสถานการณ์จำลอง ตั้งแต่ปี 2562 ถึง 2578 เทียบกับ BAU

<table>
<thead>
<tr>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(29)</td>
<td>(160)</td>
<td>(389)</td>
</tr>
</tbody>
</table>

หมายเหตุ: ตัวเลขในวงเล็บแสดงเป็นมูลค่าปัจจุบันสุทธิในอัตราคิดลด 5%
มูลค่าในมิติด้านสุขภาพ: ผลกระทบภายนอกด้านสุขภาพของมนุษย์

ในด้านมิติด้านสุขภาพครอบคลุม 2 ประเด็น ได้แก่ ผลกระทบต่อสุขภาพจาก PM2.5 และผลกระทบต่อสุขภาพจากพิษของยาฆ่าแมลง. ผลกระทบด้าน PM2.5ส่งผลกระทบโดยตรงไปยังคนทั้งในท้องถิ่นและต่างจังหวัดทั้งในและต่างประเทศ. ผลกระทบต่อสุขภาพสมองของมนุษย์ในด้านด้านสุขภาพครอบคลุม 2 ประเด็นได้แก่ ผลกระทบต่อสุขภาพจาก PM2.5 และผลกระทบต่อสุขภาพจากการฆ่าแมลง.

การวิเคราะห์สถานการณ์ปัจจุบันของการขยายพื้นที่ปลูกข้าวอินทรีย์มีผลดีว่าประโยชน์เป็นอย่างมากในเรื่องของการลดผลกระทบต่อสุขภาพเมื่อเทียบกับสถานการณ์แบบ BAU การขยายตัวของเกษตรอินทรีย์ไม่เพียงให้ประโยชน์แก่เกษตรกรในวัฒนธรรมของการลดผลกระทบต่อสุขภาพที่เกิดจากยาฆ่าแมลงเท่านั้น แต่ยังเกิดประโยชน์แก่ประชาชนทั่วไปด้วยจากการลดผลกระทบต่อสุขภาพที่เกิดจาก PM2.5.

ผลกระทบภายนอกเชิงบวกต่อสุขภาพของสาธารณชนจากการผลิตในวงกว้างเกษตรอินทรีย์จากผลกระทบของ PM2.5คิดเป็นมูลค่าประมาณ 518 ล้านดอลลาร์ใน S4 ดังแสดงในรูปที่ 11. เกิดประโยชน์เพิ่มขึ้นเมื่อเทียบกับการเกษตรอินทรีย์เพิ่มขึ้น. เนื่องจากการเกษตรอินทรีย์เป็นสิ่งที่ดีในการดูแลสุขภาพของมนุษย์.

ประโยชน์สูงสุดที่มีต่อสุขภาพคือการลดความเสี่ยงจากการพิษของยาฆ่าแมลง. ซึ่งเป็นอีกประโยชน์โดยตรงของการเกษตรอินทรีย์ ซึ่งมีการขยายพื้นที่ปลูกข้าวอินทรีย์มากขึ้น. ที่ยังได้รับประโยชน์จากการลดความเสี่ยงนี้มากขึ้นเท่านั้น การขยายพื้นที่ปลูกข้าวอินทรีย์ภายใต้ S4 สร้างมูลค่าประมาณรวม 3,628 ล้านดอลลาร์สหรัฐฯระหว่างปี 2562-2578 ซึ่งอาจมีความหมายว่าเกษตรกรมีความกังวลเป็นอย่างมากเกี่ยวกับผลกระทบของพิษยาฆ่าแมลงต่อสุขภาพของพวกเขา.

รูปที่ 11 แสดงผลประโยชน์สะสมทั้งหมดของการลดความเสี่ยงด้านสุขภาพจากสองแหล่งตั้งแต่ปี 2562 ถึง 2578 ในแต่ละสถานการณ์จำลอง เทียบกับ BAU.

![Image](https://via.placeholder.com/150)

หมายเหตุ: ตัวเลขทั้งหมดแสดงเป็นมูลค่าปัจจุบันในสุทธิที่อัตราติดลบ 5%
เนื่องจากผลกระทบเชิงบวกของการลดต้นทุนด้านการรักษาสุขภาพที่เกี่ยวกับการสัมผัส PM2.5 และพิษของสารเคมีที่สอดคล้องตามสถานการณ์สามารถสร้างขึ้นได้โดยมีข้อดีทางสุขภาพและประโยชน์สุทธิสากล มีมิติต้านทานสุขภาพที่เกิดจากการลดต้นทุนด้านการรักษาสุขภาพที่เกี่ยวกับการสัมผัส PM2.5 ระหว่างปี 2562-2578 สถานการณ์จ้างล่าสุดที่ 4 (S4) ให้ผลประโยชน์สูงสุด คือประมาณ 4,146 ล้านดอลลาร์สหรัฐ รองลงมาคือสถานการณ์จ้างล่าสุดที่ 3 (S3) และสถานการณ์จ้างล่าสุดที่ 2 (S2) โดยมีผลประโยชน์สูงสุด คือประมาณ 1,912 ล้านดอลลาร์สหรัฐและ 438 ล้านดอลลาร์สหรัฐตามลำดับ ผลลัพธ์เหล่านี้ทำให้เห็นได้อย่างชัดเจนถึงประโยชน์ทางเศรษฐกิจของการขยายพื้นที่ปลูกข้าวอินทรีย์ในแง่ของสุขภาพของมนุษย์

รูปที่ 12 แสดงประโยชน์สะสมทั้งหมดจากการลดต้นทุนสุขภาพของมนุษย์ตั้งแต่ปี 2562 ถึง 2578 ในแต่ละสถานการณ์จ้างล่าสุด เปรียบเทียบกับ BAU

<table>
<thead>
<tr>
<th>NPV: HUMAN HEALTH EXTERNALITY DIMENSION</th>
<th>Unit: Million USD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,146</td>
</tr>
<tr>
<td>S2</td>
<td>1,912</td>
</tr>
<tr>
<td>S3</td>
<td>438</td>
</tr>
</tbody>
</table>

หมายเหตุ: ตัวเลขทั้งหมดแสดงเป็นมูลค่าปัจจุบันสุทธิที่อัตราคิดลด 5%

มูลค่าที่มีตัวต้านทานสีแดงแสดง: การลดการปล่อยก๊าซเรือนกระจก

มีตัวต้านทานที่ใช้ในการวิเคราะห์สถานการณ์จ้างล่าสุดคือมิติต้านทานสีแดงแสดงที่ซึ่งครอบคลุมแหล่งที่มาของการปล่อยก๊าซเรือนกระจกจากการเผาท่อนอก การกลับกลิ่นดิน รูปที่ 13 แสดงผลประโยชน์ต่อสุขภาพจากการเปลี่ยนแปลงการปล่อยก๊าซเรือนกระจกเมื่อมีการขยายพื้นที่ปลูกข้าวอินทรีย์ในสถานการณ์จ้างล่าสุดที่ 2, 3 และ 4 เปรียบเทียบกับ BAU ระหว่างปี 2562-2578 แผนภูมิแสดงถึงคุณภาพของสารเคมีที่ปลูกข้าวอินทรีย์ในแต่ละสถานการณ์จ้างล่าสุด ซึ่งมีค่าสูงที่สุดในสถานการณ์จ้างล่าสุดที่ 4 (S4) ซึ่งมีพื้นที่ปลูกข้าวอินทรีย์ครอบคลุมกว่าร้อยละ 80 ของพื้นที่ปลูกข้าวทั้งหมด รูปแบบที่คล้ายกันนี้ยังเกิดขึ้นกับ
สถานการณ์จำลองที่ 2 (S2) และสถานการณ์จำลองที่ 3 (S3) ซึ่งสร้างผลประโยชน์มูลค่าประมาณ 1 ล้านเหรียญสหรัฐและ 3 ล้านเหรียญสหรัฐ ตามลำดับ

อย่างไรก็ตามการ 불구하고การเพาะปลูก การปลูกข้าวแบบอินทรีย์มีแนวโน้มจะปล่อยก๊าซเรือนกระจกมากกว่าการปลูกข้าวแบบดั้งเดิม การขยายพื้นที่ปลูกข้าวแบบอินทรีย์อาจเพิ่มขึ้นเท่าใด ต้นทุนการปล่อยก๊าซเรือนกระจกจากการเพาะปลูกก็จะยิ่งสูงขึ้น ซึ่งวัดเป็นมูลค่าได้ 2 ล้านเหรียญสหรัฐ 10 ล้านเหรียญสหรัฐ และ 24 ล้านเหรียญสหรัฐใน S2, S3 และ S4 ตามลำดับ เมื่อเทียบกับ BAU

มาตรการสุดท้ายที่เกี่ยวข้องกับการลดการปล่อยก๊าซเรือนกระจกคือการเก็บคาร์บอนในดิน ในการนี้ การขยายพื้นที่ปลูกข้าวอินทรีย์ทำให้เก็บเกี่ยวคาร์บอนในดินมากกว่าการปลูกข้าวแบบดั้งเดิม ดังนั้น การขยายพื้นที่ปลูกข้าวอินทรีย์ทำให้มีผลต่อการเพาะปลูกข้าวในดินมากกว่าที่สุด ซึ่งแสดงถึงการลดของก๊าซเรือนกระจกที่สำคัญจากการเพาะปลูกข้าวอินทรีย์ สถานการณ์จำลองที่ 2, 3 และ 4 ที่มีพื้นที่ปลูกข้าวอินทรีย์มากที่สุด จะได้รับประโยชน์สูงสุดจากกระบวนการเก็บคาร์บอนในดินที่มากที่สุด ซึ่งแสดงถึงการลดการปล่อยก๊าซเรือนกระจกของสถานการณ์จำลองที่ S4 จะได้รับประโยชน์สูงสุดจากกระบวนการเก็บคาร์บอนในดินคิดเป็นมูลค่า 3 ล้านเหรียญสหรัฐฯ 15 ล้านเหรียญสหรัฐฯ และ 33 ล้านเหรียญสหรัฐฯ ตามลำดับ 7

รูปที่ 13 การเปลี่ยนแปลงของการปล่อยก๊าซเรือนกระจก ทั้งผลประโยชน์และต้นทุน แยกตามแหล่งที่มา ตั้งแต่ปี 2562 ถึง 2578 เปรียบเทียบกับ BAU ในแต่ละสถานการณ์จำลอง

หมายเหตุ: ตัวเลขในวงเล็บแสดงเป็นจำนวนลบ ตัวเลขทั้งหมดแสดงเป็นมูลค่าปัจจุบันสุทธิในอัตราคิดลด 5%

7 ในส่วนที่เกี่ยวกับการปล่อยก๊าซเรือนกระจกสุทธิ ค่าตัวแทน (proxy value) จะถูกคำนวณโดยยึดตามตัวเลขในตลาดทั่วไปสู่การลดการปล่อยก๊าซเรือนกระจกที่นอกประเทศ โดยเฉลี่ยอยู่ที่ 1.67 เหรียญสหรัฐฯ ตั้งต้นคาร์บอนในลักษณะต้นทุน ตามที่อธิบายในบทที่ 4 หากการศึกษาเริ่มจากราคาการค้าในตลาดระหว่างประเทศ มูลค่าของการประโยชน์ที่คำนวณได้ใกล้เคียงตามไปด้วย
โดยรวมแล้วผลกระทบจากด้านสิ่งแวดล้อมจะเพิ่มขึ้นเมื่อพื้นที่ปลูกข้าวอินทรีย์ขยายตัว ทั้งนี้เป็นเพราะผลประโยชน์ที่ได้รับจากการลดการปล่อยก๊าซเรือนกระจกที่เกิดจากการเผาตอซังข้าว และการเพิ่มขึ้นของปริมาณคาร์บอนในดิน เมื่อพื้นที่ปลูกข้าวอินทรีย์มีมูลค่าเกินกว่ามูลค่าจากการปล่อยก๊าซเรือนกระจกในระหว่างกระบวนการปลูกข้าว รูปแบบเช่นเดียวกันนี้สามารถเห็นได้จากรูปที่ 14 ซึ่งแสดงถึงผลประโยชน์สุทธิสะสมทั้งหมดในรูปของมูลค่าของการลดการปล่อยก๊าซเรือนกระจกจากสามแหล่งที่มีตั้งแต่สามต้นในรุปที่ 13 มูลค่าของผลการลดการปล่อยก๊าซเรือนกระจกในแต่ละสถานการณ์จ่าละจะถูกเปรียบเทียบกับ BAU ในช่วงปี 2562-2578 ตั้งแต่รูปที่ 14 เห็นได้ชัดว่า S4 ซึ่งมีพื้นที่ปลูกข้าวอินทรีย์มากที่สุด ให้ประโยชน์สุทธิสูงสุดจากการลดการปล่อยก๊าซเรือนกระจก 16 ล้านดอลลาร์สหรัฐฯ) ตามด้วย S3 (8 ล้านดอลลาร์สหรัฐฯ) และ S2 (2 ล้านดอลลาร์สหรัฐฯ) เมื่อเทียบกับ BAU

รูปที่ 14 การลดการปล่อยก๊าซเรือนกระจกสุทธิ แบ่งตามแหล่งที่มาตั้งแต่ปี 2562 ถึง 2578 ในแต่ละสถานการณ์จำลอง เทียบกับ BAU (หน่วย: ล้านดอลลาร์สหรัฐ)

| NPV: ENVIRONMENTAL EXTERNALITY DIMENSION Unit: Million USD |
|-------------|------------------|
| S2 | 2 |
| S3 | 8 |
| S4 | 16 |

หมายเหตุ: ตัวเลขทั้งหมดแสดงเป็นมูลค่าปัจจุบันสุทธิที่อัตราคิดลด 5%

ประโยชน์ด้านสิ่งแวดล้อมอีกประการหนึ่งจากการขยายพื้นที่ปลูกข้าวอินทรีย์คือประโยชน์ของความหลากหลายทางชีวภาพที่ช่วยในการควบคุมศัตรูพืชตามธรรมชาติ เมื่อถูกเกษตรกรอินทรีย์ห้ามไม่ให้มีการใช้ยาฆ่าแมลงในนาข้าว ส่งผลให้มีแมลงที่มีประโยชน์เพิ่มขึ้น ซึ่งแมลงดังกล่าวทำหน้าที่ควบคุมศัตรูพืชตามธรรมชาติ ตั้งแต่ปี 2562 ถึง 2578 ดัชนีความหลากหลายทางชีวภาพถูกคาดการณ์ว่าจะเพิ่มขึ้นเมื่อพื้นที่ที่ทำนาข้าวอินทรีย์เพิ่มขึ้น การเปลี่ยนแปลงที่คาดการณ์ไว้ในดัชนีความหลากหลายทางชีวภาพในปี พ.ศ. 2578 ตามแบบจำลองสถานการณ์ที่ 4 เมื่อเทียบกับปี พ.ศ. 2562 คือร้อยละ 129 ในขณะที่สถานการณ์จำลองที่ 3 และ 4 มีอัตราการดีขึ้นของความหลากหลายทางชีวภาพสูงกว่าในสถานการณ์จำลองแบบ BAU และสถานการณ์จำลองที่ 2 ตลอดช่วงเวลาดังนี้

นอกจากนี้การเปลี่ยนแปลงที่เป็นประโยชน์ในม้าข้าวเป็นการควบคุมศัตรูพืชโดยธรรมชาติเพื่อทดแทนยาฆ่าแมลง ส่งผลให้ทั้งคุณภาพผลผลิตของเกษตรกรลดลง ดังนั้นผลประโยชน์ด้านสิ่งแวดล้อมนี้ได้ถูกพิจารณาใน "มิติรายได้และต้นทุนการผลิต" ซึ่งอยู่ใน "การเปลี่ยนแปลงในคำใช้ง่ายเกี่ยวกับการจัดศัตรูพืช" ที่แสดงไว้ไม่
ด้านบน ซึ่งได้รับประโยชน์คิดเป็นมูลค่าถึง 350 ล้านเหรียญสหรัฐในด้านต้นทุนที่ลดลงใน S4 เมื่อเทียบกับ BAU

การส่งเสริมการผลิตข้าวอินทรีย์

เมื่อรวมมูลค่าจากมิติทั้งสามเข้าด้วยกันตามที่แสดงในรูปที่ 15 ประโยชน์สุทธิของกำลังพืชที่เพิ่มขึ้นที่นี่จะส่งผลจากการลดผลกระทบต่อสุขภาพของมนุษย์ ตามด้วยการลดของภัยจากกิจกรรมของง่ายในกระบวนการจัดจ้างพืชบนด้านที่ทำให้ผลประโยชน์ที่มีมูลค่าได้อย่างมีประสิทธิภาพในด้านการผลิตที่สูงในระดับสากล

การลดลงของภัยจากกิจกรรมของง่ายในการส่งผลต่อสุขภาพของมนุษย์ ตามด้วยการลดของภัยจากกิจกรรมของง่ายในกระบวนการจัดจ้างพืชบนด้านที่ทำให้ผลประโยชน์ที่มีมูลค่าได้อย่างมีประสิทธิภาพในด้านการผลิตที่สูงในระดับสากล

การลดลงของภัยจากกิจกรรมของง่ายในการส่งผลต่อสุขภาพของมนุษย์ ตามด้วยการลดของภัยจากกิจกรรมของง่ายในกระบวนการจัดจ้างพืชบนด้านที่ทำให้ผลประโยชน์ที่มีมูลค่าได้อย่างมีประสิทธิภาพในด้านการผลิตที่สูงในระดับสากล

การลดลงของภัยจากกิจกรรมของง่ายในการส่งผลต่อสุขภาพของมนุษย์ ตามด้วยการลดของภัยจากกิจกรรมของง่ายในกระบวนการจัดจ้างพืชบนด้านที่ทำให้ผลประโยชน์ที่มีมูลค่าได้อย่างมีประสิทธิภาพในด้านการผลิตที่สูงในระดับสากล

สุทธิของผลผลิตที่สูงสุดของผลผลิตข้าวในช่วง 15 ปีที่ถัดมาตั้งแต่ปี 2562 ถึงปี 2578 โดยทั่วไปสุขภาพและสิ่งแวดล้อมมักไม่ถูกนับรวมในการคำนวนทางเศรษฐศาสตร์ แต่เมื่อมีการวัด ประเมินมูลค่า และแสดงค่าในรูปของตัวเงินแล้ว จะเห็นได้ว่าการขยายตัวของการผลิตข้าวอินทรีย์สามารถให้ประโยชน์อย่างมากทั้งในด้านสุขภาพและสิ่งแวดล้อมในช่วงเวลาหนึ่งที่เศรษฐศาสตร์ในอนาคต อย่างไรก็ตามผลประโยชน์สุทธิโดยรวมของเกษตรกรจากการได้และต้นทุนอาจติดลบ ดังนั้นเพื่อส่งเสริมให้เกษตรกรผลิตข้าวอินทรีย์ จึงควรพิจารณานโยบายเพิ่มเติมเพื่อครอบคลุมมูลค่าของการผลิตข้าวปลอดภัย

โดยทั่วไปสุขภาพและสิ่งแวดล้อมมักไม่ถูกนับรวมในการคำนวนทางเศรษฐศาสตร์ แต่เมื่อมีการวัด ประเมินมูลค่า และแสดงค่าในรูปของตัวเงินแล้ว จะเห็นได้ว่าการขยายตัวของการผลิตข้าวอินทรีย์สามารถให้ประโยชน์อย่างมากทั้งในด้านสุขภาพและสิ่งแวดล้อมในช่วงเวลาหนึ่งที่เศรษฐศาสตร์ในอนาคต อย่างไรก็ตามผลประโยชน์สุทธิโดยรวมของเกษตรกรจากการได้และต้นทุนอาจติดลบ ดังนั้นเพื่อส่งเสริมให้เกษตรกรผลิตข้าวอินทรีย์ จึงควรพิจารณานโยบายเพิ่มเติมเพื่อครอบคลุมมูลค่าของการผลิตข้าวปลอดภัย

โดยทั่วไปสุขภาพและสิ่งแวดล้อมมักไม่ถูกนับรวมในการคำนวนทางเศรษฐศาสตร์ แต่เมื่อมีการวัด ประเมินมูลค่า และแสดงค่าในรูปของตัวเงินแล้ว จะเห็นได้ว่าการขยายตัวของการผลิตข้าวอินทรีย์สามารถให้ประโยชน์อย่างมากทั้งในด้านสุขภาพและสิ่งแวดล้อมในช่วงเวลาหนึ่งที่เศรษฐศาสตร์ในอนาคต อย่างไรก็ตามผลประโยชน์สุทธิโดยรวมของเกษตรกรจากการได้และต้นทุนอาจติดลบ ดังนั้นเพื่อส่งเสริมให้เกษตรกรผลิตข้าวอินทรีย์ จึงควรพิจารณานโยบายเพิ่มเติมเพื่อครอบคลุมมูลค่าของการผลิตข้าวปลอดภัย
การวิเคราะห์ที่นำเสนอในบทก่อนหน้า ให้ข้อมูลเชิงลึกเกี่ยวกับผลกระทบของการขยายพื้นที่ปลูกข้าวอินทรีย์สำหรับการวัดต่างๆ ซึ่งถูกจัดกลุ่มในสามมิติ เพื่อให้เห็นภาพทั้งหมด (trade-offs) และจุดร่วม (synergy points) โดยรวมที่มีความสำคัญต่อการออกแบบนโยบายให้ได้ข้อสรุปอย่างชัดเจน จึงได้นำเสนอการเปลี่ยนแปลงสุทธิที่คาดว่าจะเกิดขึ้นในแต่ละการวัด ภายนอกแต่ละสถานการณ์จ้างลองในรูปที่ 16 แสดงผลนับ ให้เห็นว่า แต่ละสถานการณ์สร้างผลประโยชน์สุทธิสูงสุดในเกือบทุกประเด็น เมื่อเทียบกับสถานการณ์จ้างลองแบบ BAU สถานการณ์จ้างลองที่ 4 (S4) ให้ผลประโยชน์สุทธิสูงสุด แม้ว่ามีการรายได้ด้อยในผลลัพธ์จากสถานการณ์จ้างลองที่ 4 จะมีค่าสูงเมื่อเทียบกับสถานการณ์จ้างลองแบบ BAU ซึ่งส่วนใหญ่เป็นผลจากการสูญเสียผลผลิตข้าวและต้นทุนในการเปลี่ยนแปลงที่มีต่อการได้ผลผลการณ์จ้างลองนี้ ซึ่งมีพื้นที่ปลูกข้าวอินทรีย์เพิ่มขึ้นเป็นอย่างมากแต่ด้านเศรษฐกิจว่าร้อยละ 80 ของพื้นที่ปลูกข้าวทั้งหมดในภาคตะวันออกเฉียงเหนือของประเทศไทย ในรูปที่ 16 เส้นสีน้ำเงินแสดงสถานการณ์จ้างลองที่ 4 เส้นสีแดงแสดงสถานการณ์จ้างลองที่ 3 และเส้นสีดำแสดงสถานการณ์ที่ 2 เทียบกับ BAU (แสดงเป็นพื้นที่สีเทาตรงกลาง) จะเห็นได้จากแผนภูมิว่า S4 มีผลดีผลิตผลข้าวมากกว่า BAU สถานการณ์จ้างลองที่ 2 และ 3 นอกจากนี้ S4 ยังมีผลผลิตข้าวที่สูงกว่า BAU สถานการณ์จ้างลองที่ 2 และ 3 ซึ่งเป็นผลจากต้นทุนในการปรับเปลี่ยนแปลงที่ดินจากการปลูกข้าวแบบทั้งไปเป็นพื้นที่ปลูกข้าวแบบอินทรีย์
สำหรับมิติด้านสุขภาพ สถานการณ์จำลองที่ 4 (S4) นำเสนอผลประโยชน์สูงสุดอย่างชัดเจนโดยไม่มีสิ่งที่ต้องแลกให้มิติด้านสุขภาพ เนื่องจากการปลูกข้าวแบบอินทรีย์มีประโยชน์ต่อสุขภาพอย่างชัดเจนจากการลดการสัมผัสกับ PM2.5 และยาฆ่าแมลง ดังนั้น การเพิ่มพื้นที่ปลูกข้าวอินทรีย์จะช่วยลดความเสี่ยงและต้นทุนทางเศรษฐกิจของการเจ็บป่วย

เมื่อพิจารณาการปล่อยก๊าซเรือนกระจก สถานการณ์จำลองที่ 4 (S4) สถานการณ์จำลองที่ 3 (S3) และสถานการณ์จำลองที่ 2 (S2) เทียบกับ BAU ผลประโยชน์ในสองคำ จากทั้งหมดสามคำที่ได้รับการประเมินในส่วนที่เกี่ยวกับการลดของการเผาข้าวและการเพิ่มการกักเก็บคาร์บอนในดิน S4 ซึ่งให้ผลประโยชน์สูงกว่า S3 และ S2 ตามลำดับ (ดูกราฟแท่งขนาดเล็กที่อยู่ด้านบนแผนภูมิเรดาร์สำหรับรายละเอียดการปล่อยก๊าซเรือนกระจกในสถานการณ์จำลองต่าง ๆ) อย่างไรก็ตาม ดังที่นำเสนอในส่วนที่ผ่านมา การปลูกข้าวแบบอินทรีย์จะกระตุ้นให้เกิดการปล่อยก๊าซเรือนกระจกในระหว่างการเพาะปลูกมากกว่าการปลูกข้าวแบบดั้งเดิมซึ่งส่งผลให้ผลการปล่อยก๊าซเรือนกระจกที่ปล่อยออกมาในกระบวนการเพาะปลูกใน S4, S3 และ S2 มีค่าดีลบ เมื่อเทียบกับ BAU อย่างไรก็ตาม เมื่อนำการปล่อยก๊าซทั้งหมดรวมมารวมกันในมิติดิน คาดว่าการปลูกข้าวแบบอินทรีย์จะปล่อยก๊าซเรือนกระจกโดยรวมน้อยกว่าการปลูกข้าวแบบดั้งเดิม

เมื่อพิจารณาสถานการณ์ตามมิติด้านต่าง ๆ (แสดงโดยรูปที่ 9-14) รวมกันแล้ว ผลประโยชน์โดยรวมสูงสุดไม่ได้สร้างผลกระทบหรือประโยชน์สูงสุดในเชิงบวกเสมอไป จะเห็นได้จากรูปที่ 16 สถานการณ์จำลองที่ 4 (S4) ซึ่งคาดว่าการขยายพื้นที่ปลูกข้าวอินทรีย์ครอบคลุมมากกว่าร้อยละ 80 ของพื้นที่ปลูกข้าวในภาคตะวันออกเฉียงเหนือของประเทศไทย จะก่อให้เกิดผลกระทบเชิงบวกสูงสุดต่อสังคมโดยรวม แต่ก็ยังมีการสูญเสียสูงสุดที่เกิดกับเกษตรกรอันเนื่องมาจากข้อมูลผลผลิตข้าวและต้นทุนการเตรียมที่ดินที่สูงขึ้นหลักฐานนี้ชี้ให้เห็นว่า หากมีการสนับสนุนนโยบายเพื่อจัดที่ปลูกข้าวอินทรีย์ควรมีการจัดสรรและนโยบายเพิ่มเติมที่สามารถบรรเทาผลกระทบ ลดผลกระทบ หรือขจัดความสูญเสียเหล่านี้
รูปที่ 16 การวิเคราะห์สถานการณ์จำลองตามมูลค่าของปัญหาทั้งหมดในแต่ละสถานการณ์เปรียบเทียบกับมูลค่าสะสมของ BAU ตั้งแต่ปี 2562-2578

หมายเหตุ: การเปลี่ยนแปลงของมูลค่าภูกว้างแบบสะสมในรายปี 2562-2578 และแปลงเป็นมูลค่าปัจจุบันสูงต่ำกว่าอัตราคิดลด 5% หน่วยสำหรับการลดความเสี่ยงของการเสียชีวิตจากพิษของยาฆ่าแมลงและสินค้าเสริมทุนสุขภาพ หน่วยสำหรับมาตรการอื่น ๆ ล้านดอลลาร์สหรัฐ

6. บทสรุป / ข้อความสำคัญ

การศึกษาที่นี้จัดให้เห็นผลลัพธ์ที่กว้างขึ้นเกี่ยวกับต้นทุนและผลประโยชน์ที่มองเห็นได้และมองไม่เห็นของการผลิตข้าวแบบดั้งเดิมและแบบอินทรีย์ในภาคตะวันออกเฉียงเหนือของประเทศไทย ต้นทุนและผลประโยชน์ที่มองเห็นได้ (ต้นทุนที่เกี่ยวกับธุรกรรมการเงินและมูลค่าการศึกษา) และมูลค่าผลผลิตที่มองไม่เห็น (ต้นทุนการผลิต การเสียชีวิต การเสี่ยงสุขภาพ และ GDP) อย่างไรก็ตาม สาระสำคัญในการตัดสินใจเกี่ยวกับนโยบายเศรษฐกิจ - รวมถึงปริมาณและมูลค่าผลผลิตข้าว ต้นทุนการผลิต รายได้เกษตรกร รายได้ของสหกรณ์ รายได้จากการซื้อขาย และ GDP อย่างไรก็ตาม สามารถนำมาพิจารณาในการตัดสินใจการศึกษาดั้งเดิมและผลประโยชน์ที่มองเห็นได้ โดยต้นทุนนี้อาจมีผลกระทบต่อเศรษฐกิจและผลประโยชน์ที่มองไม่เห็นทั่วไป ซึ่งเรียกว่า “ผลกระทบภายนอก (Externalities)” ต้นทุนนี้จึงเป็นต้องการวิเคราะห์และพิจารณาจากระหว่างนโยบายเศรษฐกิจและผลประโยชน์ที่มองเห็นได้ สิ่งที่ขาดต้องการพิจารณาในระบบเศรษฐกิจ และมีผลต่อการผลิตข้าวและการจ้างงานในภาคการผลิตข้าว ซึ่งมีต่อการผลิตข้าว การผลิตข้าวของเกษตรกร และการจ้างงานในภาคการผลิตซึ่งมีต่อการผลิตข้าว การจ้างงานและรายได้เกษตรกร ที่ทำให้เกิดการกระทบต่อภาวะเศรษฐกิจและสังคมในระบบเศรษฐกิจทั่วไป การเปลี่ยนแปลงผลผลิตและผลประโยชน์ที่มองเห็นได้อาจต้องเข้าใจกับมูลค่าของผลกระทบที่เกิดขึ้นของเกษตรกรและประชาชนทั่วไป และต้องระมัดระวังผลกระทบต่อสิ่งแวดล้อมที่เกิดขึ้น
รูปที่ 17: ส่วนที่มองเห็นและมองไม่เห็นของเศรษฐกิจข้าว

ตังที่เห็นได้จากรูปที่ 17 ต้นทุนและผลประโยชน์ของการผลิตข้าวที่ได้รับผลกระทบจากภายนอกมีมากมาย โดยเฉพาะอย่างยิ่งในส่วนที่เกี่ยวข้องกับผลกระทบต่อทรัพยากรธรรมชาติและทุนมนุษย์ ตามที่อธิบายไว้ข้างต้น ประเด็นที่เกี่ยวข้องกับทรัพยากรธรรมชาติที่รวมอยู่ในการศึกษาที่นี้ประกอบด้วยความหลากหลายทางชีวภาพและการปล่อยก๊าซเรือนกระจก ในขณะที่ทรัพยากรมนุษย์ครอบคลุมผลลัพธ์ผลกระทบต่อสุขภาพของมนุษย์ที่เกิดจากพิษทางอากาศและยาฆ่าแมลง กรอบการทำงานในการประเมินของ TEEBAgriFood และการวิเคราะห์สถานการณ์จำลองใช้เพื่อระบุสิ่งที่ต้องแลกเปลี่ยนและการทำงานร่วมกันที่สามารถเพิ่มประโยชน์สูงสุดและลดต้นทุน

ผลจากการศึกษาของจำลองให้เห็นว่าการแลกเปลี่ยนที่สำคัญบางประการในระยะยาว ประกอบด้วยการขยายพื้นที่ปลูกข้าวอินทรีย์ที่คาดการณ์ไว้จะก่อให้เกิดการปล่อยก๊าซเรือนกระจกสุทธิโดยรวมน้อยกว่าการปล่อยก๊าซเรือนกระจกที่เกิดจากการปลูกข้าวแบบดั้งเดิม แต่จะทำให้ผลผลิตข้าวลดลง ส่งผลให้รายได้ของเกษตรกรลดลง

ข้อเสนอแนะที่สำคัญของการแลกเปลี่ยนระหว่างผลผลิตข้าวและต้นทุนการปลูกข้าว การขยายพื้นที่ปลูกข้าวอินทรีย์จะช่วยลดต้นทุนการปลูกข้าวของเกษตรกรเนื่องจากผลผลิตที่มีประโยชน์มีมากขึ้น แต่จะทำให้ผลผลิตข้าวลดลง การลดการปลูกก้าจะไม่สามารถทดแทนการสูญเสียผลผลิตข้าว หากข้าวอินทรีย์มีราคาเท่ากับข้าวธรรมดา เนื่องจากอุปทานข้าวอินทรีย์เพิ่มขึ้นเป็นอย่างมากเมื่อพื้นที่ปลูกข้าวอินทรีย์ขยายตามสมมติฐานในสถานการณ์จำลองที่ 4 (S4) ดังนั้น ถ้าที่ใดถ้าจากการปลูกข้าวอินทรีย์จะต่ำกว่าข้าวธรรมดา
ด้วยการเน้นการแลกเปลี่ยนวิธีนี้ การวิเคราะห์สถานการณ์จ่าลองตามพื้นที่เพาะปลูกข้าวแบบดั้งเดิมและแบบอินทรีย์ที่แตกต่างกันสามารถชี้ให้เห็นถึงโอกาสในการทำงานร่วมกัน เหมือนกันใดที่สามารถลดการแลกเปลี่ยนลงได้ ซึ่งจะเป็นประโยชน์สำหรับการผู้ที่ทำหน้าที่ในการตัดสินใจ ผลการวิเคราะห์สถานการณ์แสดงให้เห็นถึงข้อขัดแย้งว่าประโยชน์โดยรวมสูงสุดอาจไม่ส่งผลกระทบเชิงบวกในทุกมิติ และจะต้องคำนึงถึงการแลกเปลี่ยนและทรัพย์สินกันผู้มีส่วนได้ส่วนเสียอย่างมาก

สถานการณ์จำลองที่ 4 (S4) ซึ่งมีผลกระทบโดยรวมสูงสุด แต่มีผลกระทบเชิงลบต่อมิติทางการเงินเนื่องจากผลผลิตต่ำกว่า 80 ไร่/กิโลกรัมการปลูกข้าวอินทรีย์ ในขณะที่มีผลผลิตต่ำกว่า 100 ไร่/กิโลกรัมการปลูกข้าวธรรมดา แต่ผลผลิตต่ำกว่า 80 ไร่/กิโลกรัมการปลูกข้าวธรรมดาจะเป็นประโยชน์สูงสุดในสถานการณ์นี้ เราต้องระวังอย่างหนาการสูญเสียจากการผลิตข้าวส่งผลกระทบโดยตรงต่อเกษตรกร และผลผลิตที่มีความเสี่ยงอยู่ที่ติดต่อ อันเนื่องมาจากต้นทุนการสูญเสียที่สูงกว่าราคาข้าวทั่วไป จากการคำนวณของราคาข้าวอินทรีย์ที่ราคาข้าวทั่วไปประมาณร้อยละ 35 ต่อกิโลกรัมเป็นอย่างน้อย เพื่อเพิ่มที่จะขยายเกษตรเชิงบวกจากผลผลิตที่ลดลงได้

นอกจากนี้ สิ่งสำคัญคือต้องระมัดระวังว่าใครคือผู้ได้รับผลกระทบจากแต่ละประเด็นที่ได้รับการประเมินในการศึกษา ข้าวข้าวอินทรีย์จะทำให้เกิดประโยชน์ต่อสาธารณะมากขึ้นอย่างชัดเจน ด้วยการลดผลกระทบต่อสุขภาพจาก PM2.5 การปรับปรุงดัชนีความหลากหลายทางชีวภาพ และลดผลกระทบต่อสุขภาพ

สำหรับเกษตรกร การเปลี่ยนมาปลูกข้าวอินทรีย์สร้างประโยชน์ให้กับเกษตรกรเป็นมูลค่าใน 2 ประเด็น คือ การลดต้นทุนการเพาะปลูกข้าว และการลดผลกระทบต่อสุขภาพจากพิษยาฆ่าแมลง อย่างไรก็ตาม เกษตรกรจะต้องสูญเสียจากผลผลิตที่ลดลง การลดต้นทุนสามารถช่วยลดการสูญเสียผลผลิตได้บางส่วน ซึ่งส่งผลกระทบต่อเกษตรกรที่เปลี่ยนจากการปลูกข้าวอินทรีย์มีราคาข้าวที่สูงกว่าข้าวธรรมดา 35 ต่อกิโลกรัมเป็นอย่างน้อย เพื่อเพิ่มที่จะขยายเกษตรเชิงบวกจากผลผลิตที่ลดลงได้

สรุปแล้ว ผลประโยชน์ของเกษตรกรและเอกชนที่เกิดจากการเพิ่มพื้นที่ปลูกข้าวอินทรีย์เป็นไปในเชิงบวกอย่างไรก็ตาม เราต้องพิจารณาให้แน่ใจว่าการตัดสินใจเปลี่ยนมาปลูกข้าวอินทรีย์ขึ้นอยู่กับเกษตรกรเป็นหลักการสูญเสียก็ไม่ถึงเสียงเสียผลผลิตแต่มีความสำคัญมากเมื่อเทียบกับประโยชน์ต่อสุขภาพของเกษตรกร ซึ่งจะไม่ปรากฏในข้อขัดแย้ง นอกจากนี้เมื่อจำกัดการพิจารณาเศรษฐกิจที่ไม่แน่นอนตามผลของเศรษฐกิจ ซึ่งจะไม่ปรากฏในข้อขัดแย้ง นอกจากนี้เมื่อจำกัดการพิจารณาเศรษฐกิจที่ไม่แน่นอนตามผลของเศรษฐกิจ ซึ่งจะไม่ปรากฏในข้อขัดแย้ง นอกจากนี้เมื่อจำกัดการพิจารณาเศรษฐกิจที่ไม่แน่นอนตามผลของเศรษฐกิจ

สรุปแล้ว ผลประโยชน์ของเกษตรกรและเอกชนที่เกิดจากการเพิ่มพื้นที่ปลูกข้าวอินทรีย์เป็นไปในเชิงบวกอย่างไรก็ตาม เราต้องพิจารณาให้แน่ใจว่าการตัดสินใจเปลี่ยนมาปลูกข้าวอินทรีย์ขึ้นอยู่กับเกษตรกรเป็นหลักการสูญเสียก็ไม่ถึงเสียงเสียผลผลิตแต่มีความสำคัญมากเมื่อเทียบกับประโยชน์ต่อสุขภาพของเกษตรกร ซึ่งจะไม่ปรากฏในข้อขัดแย้ง นอกจากนี้เมื่อจำกัดการพิจารณาเศรษฐกิจที่ไม่แน่นอนตามผลของเศรษฐกิจ ซึ่งจะไม่ปรากฏในข้อขัดแย้ง นอกจากนี้เมื่อจำกัดการพิจารณาเศรษฐกิจที่ไม่แน่นอนตามผลของเศรษฐกิจ ซึ่งจะไม่ปรากฏในข้อขัดแย้ง นอกจากนี้เมื่อจำกัดการพิจารณาเศรษฐกิจที่ไม่แน่นอนตามผลของเศรษฐกิจ

เพื่อประกอบการสังเคราะห์นี้ มีการจัดทำเอกสารแยกไว้สำหรับผู้ก่อหน่วยรายโดยเฉพาะ โดยมุ่งเน้นที่ข้อความสำคัญจากการประเมินและจัดเตรียมตัวเลขสำคัญจากการวิเคราะห์สถานการณ์จําลอง สามารถดูเอกสารได้ที่เว็บไซต์ teebweb.org โดยมีเนื้อหาสรุปตั้งที่แสดงในกล่องข้อความที่ 4 ด้านล่าง

กล่องข้อความที่ 4: สรุปข้อความสำคัญ

1. เพื่อให้บรรลุเป้าหมายของโมเดลเศรษฐกิจสีเขียว (Bio-Circular-Green Economy) ประเทศไทยต้องการการเติบโตที่ยั่งยืนมากขึ้นและมีความรับผิดชอบต่อสิ่งแวดล้อมมากขึ้น จำเป็นต้องมีการเปลี่ยนแปลงไปสู่การผลิตที่ยั่งยืนและการจัดการภูมิทัศน์ที่ยั่งยืนโดยสมบูรณ์

2. ผลกระทบของการเปลี่ยนแปลงจําเป็นต้องได้รับการประเมินในระดับภูมิทัศน์ (Landscape Level) เนื่องจากผลลัพธ์เป็นตัวเลขที่ยากที่จะสังเกตุ การจัดเตรียมตัวเลขสำคัญจากการวิเคราะห์สถานการณ์จําลองและผลกระทบภูมิทัศน์และการพึ่งพาในระบบ

3. สิ่งสำคัญคือต้องให้อิจฉาสัมพันธ์ระหว่างธรรมชาติกับระบบอาหารจากข้าว โดยการวัดปริมาณการเปลี่ยนแปลงของเกษตรกรที่มีผลที่มีไปในที่ตั้ง จากระบบนิเวศสู่ระบบอาหารและความเป็นอยู่ที่ดีของมนุษย์ ซึ่งสิ่งต่าง ๆ เหล่านี้เกี่ยวกับการประกันความเสถียรของเวิร์ชั่นที่ใส่ มากน้อยเพียงใด และกว่าใด มากกว่าข้างหน้า แสดงผลกระทบของการทำธุรกิจตามปกติ (Business as Usual) และผลที่จะเป็นไปเมื่อเปรียบเทียบกับสถานการณ์การวางแผนที่จะสืบทอดทางการเกษตรทางเลือกที่สําหรับอนาคตอื่น ๆ

4. ผลสัมฤทธิ์ที่ได้รับผลกระทบจากนวัตกรรมการเพาะปลูก เมล็ดพันธุ์ และเรื่องให้ค่าสิ่งแวดล้อม ป้องกัน เมื่อพิจารณาว่าการเปลี่ยนแปลงจากเกษตรแบบดั้งเดิมเป็นเกษตรอินทรีย์นั้นเป็นได้หรือไม่และเป็นสิ่งที่ดีหรือไม่ ถ้ามีการสืบสานพื้นฐานอีก ยอมรับผลสัมฤทธิ์ของการเปลี่ยนแปลงแบบอินทรีย์ต้องมองในระยะสั้นสูงสุดจะต้องมีการรองรับที่ดีมีการสืบสานพื้นฐานที่ดี มีการเงินบริหารและการผลิต และมูลค่าที่เป็นตัวเงิน อันเป็นผลจากการใช้สถานการณ์ทางเลือกการเปลี่ยนเปรียบเทียบกับ BAU

5. การปล่อยก๊าซเรือนกระจก (GHG) จากการเก็บเกี่ยวข้าวจากข้าวในที่พื้นที่ exaggerated (การผลิตข้าวแบบดั้งเดิม) และสามารถลดผลกระทบได้ดังการเก็บเกี่ยวจากข้าวอินทรีย์ การสะสมคาร์บอนในนาข้าวสามารถลดการปล่อยก๊าซเรือนกระจกโดยรวม ทำให้และการปล่อยก๊าซเรือนกระจกในป่าที่เก็บเกี่ยวข้าวสูงกว่าการปล่อยก๊าซเรือนกระจกในป่าที่เก็บเกี่ยวข้าวแบบดั้งเดิม

6. ความหลากหลายทางชีวภาพได้รับผลกระทบจากการเปลี่ยนแปลงการขยายตัวของข้าวอินทรีย์ ความหลากหลายทางชีวภาพทางการเกษตรเพิ่มมากขึ้นโดยความหลากหลายของแมลงในระดับภูมิทัศน์ ซึ่งส่งเสริมการควบคุมแมลงศัตรูพืชทางธรรมชาติ

7. การผลิตข้าวอินทรีย์ก่อให้เกิดประโยชน์อื่น ๆ ต่อความเป็นอยู่ของมนุษย์ ทั้งในด้านสังคม อาหาร และวัฒนธรรม

8. การตัดสินใจของเกษตรกรที่จะยอมรับและ/หรือปลูกข้าวอินทรีย์ต้องพิจารณาถึงค่าสูงสุดของผลผลิตรับผิดชอบต่อสิ่งแวดล้อมโดยเฉพาะ ผลกระทบทางด้านการผลิตและสิ่งแวดล้อมทั้งหมด

9. การตัดสินใจของเกษตรกรที่จะยอมรับและ/หรือปลูกข้าวอินทรีย์ต้องพิจารณาถึงค่าสูงสุดของผลผลิตรับผิดชอบต่อสิ่งแวดล้อมโดยเฉพาะ ผลกระทบทางด้านการผลิตและสิ่งแวดล้อมทั้งหมด
การอภิปรายนโยบายและข้อเสนอแนะ

ประเทศไทยใช้โมเดลเศรษฐกิจชีวภาพ เศรษฐกิจหมุนเวียน และเศรษฐกิจสีเขียว (Bio-Circular-Green Economy) เป็นกรอบยุทธศาสตร์ส่งเสริมความมั่นคงทางอาหาร โอกาสทางเศรษฐกิจ ความยั่งยืนของสิ่งแวดล้อม และการมีชีวิตอยู่ร่วมกันในสังคม เพื่อให้บรรลุจุดมุ่งหมายของโมเดลเศรษฐกิจชีวภาพ เศรษฐกิจหมุนเวียน และเศรษฐกิจสีเขียวในประเทศไทย เพื่อให้มีการติดต่อกันอย่างมีมิติและมีความรับผิดชอบต่อสิ่งแวดล้อมมากขึ้น จำเป็นต้องมีการเปลี่ยนแปลงไปสู่การผลิตข้าวและการจัดการภูมิทัศน์ที่มีความยั่งยืน

การผลิตข้าวขึ้นอยู่กับบริการของระบบビジネ เช่น การควบคุมศัตรูพืชโดยเชิงวิวัฒน์และการมอนิโอนอาหารในต้น การผลิตอาหารในอนาคตจะต้องอยู่ในความเสถียรหากไม่สามารถจับกับการทักษะระบบビジネ ให้เชื่อถือและยืดหยุ่น การให้บริการของระบบビジネมีความสำคัญต่อระบบอาหาร ซึ่งถูกผลิตในสภาพแวดล้อมที่มีการเปลี่ยนแปลงจากการกระทำของมนุษย์มากยิ่งขึ้น (เช่น การเปลี่ยนแปลงสภาพภูมิอากาศ) และมีการเปลี่ยนแปลงอื่น ๆ ที่เกิดจากการลดความสามารถหลากหลายทางชีวภาพในท้องถิ่นและความเสี่ยงของระบบビジネในทางอื่น การผลิตข้าวในแนวเดียวกันกับแบบจำลองนี้ และผลจาก การศึกษาในปัจจุบันสนับสนุนข้อเท็จจริงของการผลิตข้าวอินทรีย์ สำหรับการปรับแนวทาง

หากไม่มีการแทรกแซง นั่นคือ อยู่ภายใต้เงื่อนไขการท่าตูริตรูปแบบ (BAU) ในช่วงปี พ.ศ. 2578 แบบจำลองที่พัฒนาขึ้นในการศึกษานี้คาดการณ์ว่าจะต้องปัจจัยและสภาพแวดล้อมในปุ่มข้อแบบจำลองในขณะที่ตั้งข้อต้องจัดการให้เสถียรและยืดหยุ่นได้ แต่ต้องกล่าวถึงการดำเนินการที่มีความเสี่ยงสูงทางชีวภาพในอนาคต ลดการให้บริการของระบบビジネ และสร้างความเสี่ยงที่ส่งผลกระทบต่อสุขภาพของมนุษย์ การเพิ่มขึ้นของการสูญเสียต่อ บริการของระบบビジネและสุขภาพของมนุษย์ ด้วยมูลค่าที่เทียบเท่าจากผลกระทบการผลิตข้าวแบบอินทรีย์ และผลก็จะมีกลับไปสู่การผลิตข้าวอินทรีย์ที่แข็งแกร่งสำหรับสนับสนุนการเปลี่ยนแปลงไปสู่ระบบการทำการเกษตรอินทรีย์

1. การพยากรณ์การผลต่างระบบเกษตรจากข้าวปลูกกิจกรรมที่เกิดจาก สุขภาพและสิ่งแวดล้อมที่ดีขึ้นอย่างไรก็ตาม เมื่อผลการเกษตรจากข้าวปลูกกิจกรรมที่เกิด neglected

ตั้งแต่เดือนมีนาคมโครงการแล้วว่า ยังมีต้นทุนและผลกระทบทางเศรษฐกิจเพิ่มเติมที่สำคัญที่ในการ ระบบข้าวที่ปฏิบัติแล้วไม่เก็งกับข้อโดยตรงกับเศรษฐกิจข้าว ต้นทุนตลอดประการที่มีต่อต้านแล้วกล่าว เรียกว่า “ผลกระทบภายนอก (Externalities)” ผลจากการศึกษาของราชีให้เห็นอย่างชัดเจนว่าการขยาย
พื้นที่ปลูกข้าวอินทรีย์ทำให้เกิดผลกระทบเชิงลบโดยรวมต่อสังคมมากขึ้น ซึ่งครอบคลุมเพิ่มเติมความเสี่ยงสูงของมนุษย์ และสังคม
เกษตรกรมีทั้งส่วนได้และส่วนเสียจากการผลิตข้าวอินทรีย์ ส่วนที่ได้คือการลดต้นทุนการเพาะปลูกเนื่องจากไม่ต้องใช้ปุ๋ยเคมีและยาฆ่าแมลง อย่างไรก็ตาม การลดลงของผลผลิตเมื่อเปรียบเทียบกับการปลูกด้วยวิธีการแบบดั้งเดิมทำให้เกษตรกรต้องสูญเสีย ผลลัพธ์ของเรื่องนี้เห็นว่าราคาข้าวข้าวอินทรีย์ไม่ได้สูงไปกว่าราคาข้าวธรรมดา การลดต้นทุนก็ไม่สามารถชดเชยการสูญเสียผลผลิต และส่งผลกับการขาดทุนสุทธิ

แม้การสูญเสียผลผลิตของเกษตรกรจะไม่มากมายเหมือนกับผลกระทบทางการผลิตที่เป็นบางอันกิตติจากอาการพื้นที่ปลูกข้าวอินทรีย์ แต่ความท้าทายคือการทำอย่างไรจะทำให้เกษตรกรเชื่อมั่นที่ข้าวสารปลอดภัยได้ เนื่องจากการสูญเสียข้าวจะบันทัดความเป็นอยู่ที่ดีของชาวนาเป็นอย่างมาก นอกจากนี้ยังมีผลเสียด้านการตัดสินใจของเกษตรกรในการยอมรับและทำการเกษตรแบบอินทรีย์ต่อไป เพื่อตอบคำถามที่ท้าทายนี้และจากหลักฐานในการศึกษา เราเสนอให้มีการแทรกแซงแบบนโยบายที่มีเป้าหมายเพื่อเพิ่มพื้นที่ปลูกข้าวอินทรีย์โดยมีการรับประกันความเป็นอยู่ที่ดีของเกษตรกรควบคู่ไปด้วย

2. นโยบายการอุดหนุนหลักในการเกษตรมุ่งเน้นไปที่การผลิตข้าวอินทรีย์แต่ไม่ได้สนับสนุนให้เกษตรกรนำไปมาแบบปฏิบัติที่ถูกล็อคไว้ จำเป็นต้องมีการปรับเงินอุดหนุนเพื่อไม่มีการพื้นที่คาดการณ์ข้าวอินทรีย์ โดยมีเงื่อนไขในการให้เงินอุดหนุนคือเกษตรจะต้องปรับใช้แบบปฏิบัติแบบเกษตรอินทรีย์ เช่น การทำาข้าวอินทรีย์

ประเด็นแรกคือการมุ่งเน้นที่จะทำอย่างไรให้เกษตรกรผู้ปลูกข้าวพันธุ์ที่ใช้มาใช้แนวทางเกษตรอินทรีย์มากขึ้น การทำาข้าวอินทรีย์ต้องมีการลงทุนเพิ่มเติมในทันที เช่น แรงงาน การเตรียมดิน และปุ๋ยอินทรีย์ นอกจากนี้ จากข้อมูลการสำรวจครัวเรือน เกษตรกรอาจมีความกังวลเกี่ยวกับการสูญเสียผลผลิต โดยเฉพาะในช่วงแรกของการเปลี่ยนจากวิธีการปลูกไปสู่เกษตรอินทรีย์ ดังนั้น พวกเขาอาจไม่เห็นใจที่จะแบกรับต้นทุนที่สูงนี้เพื่อหลีกเลี่ยงผลผลิตที่ไม่แน่นอน ซึ่งส่งผลให้การเปลี่ยนมาทำาข้าวแบบอินทรีย์มีอัตราค่าแม้จะมีประโยชน์ระยะยาวจะต้องตีตก็ตาม การเกษตรจึงมุ่งให้เกษตรกรรับเงินเพื่อใช้ในการทำาข้าวอินทรีย์เพื่อให้ได้ผลผลิตที่ดีที่สุดจากการเปลี่ยนไปที่ให้เกษตรกรที่มีขันคือการเสนอสิ่งจูงใจข้าวควรโดยมีเงื่อนไขสูงกว่าการทำาเกษตรทั่วไป ผลจากการศึกษาแสดงให้เห็นอย่างชัดเจนว่าการอุดหนุนข้าวสารในช่วงเปลี่ยนผ่าน (ก่อนได้รับใบรับรองเกษตรอินทรีย์) ทั้งในรูปแบบของการอุดหนุนต่อพื้นที่หรือการอุดหนุนต่อราคาข้าว ได้เป็นการเข้าสู่เกณฑ์ของเกษตรกรผู้ปลูกข้าวพันธุ์ที่ใช้แนวทางเกษตรอินทรีย์มากขึ้น เมื่อเทียบกับพื้นที่ที่ไม่มีการให้เงินช่วยเหลือ ตามโครงการข้าวอินทรีย์เหล่านี้ล่าสุด เกษตรกรมีการดำเนินโครงการพื้นที่การผลิตข้าวที่ได้รับการรองรับเกษตรอินทรีย์มีพื้นที่ข้าวอย่างมาก โดยเฉลี่ยประมาณ 18,041 เส้นที่ต่อปี เมื่อเปรียบเทียบกับการเพิ่มขึ้นเพียง 2,035 เส้นที่ต่อปีก่อนที่จะมีโครงการ ผลการศึกษาและหลักฐานจากโครงการข้าวอินทรีย์เหล่านี้ล่าสุดไปยังข้อสำคัญในการเพิ่มอัตราการยอมรับแนวทางเกษตรอินทรีย์
การศึกษาที่จ้างช่างเครื่องมือที่มีศักยภาพอีกประเภทหนึ่ง ที่อาจให้ประสิทธิผลด้านการอุดหนุน เครื่องมือนี้มีศักยภาพเพื่อพัฒนาเกษตรกรด้านแบบใหม่และน่าสนใจพยายามทางเกษตรอินทรีย์เพื่อส่งเสริมเกษตร อินทรีย์ในชุมชน ประเด็นสำคัญของการพัฒนาเกษตรกรด้านแบบเพื่อส่งเสริมเกษตรอินทรีย์ คือ คำแนะนำจากเกษตรกรด้านแบบมีความน่าเชื่อถือมากขึ้น จากการศึกษานี้ให้ข้อมูลเชิงลึกเกี่ยวกับเกษตรกรด้านแบบที่มีสภาพทางเศรษฐกิจและสังคมแย่ยิ่งกว่าอันตรายได้คิด การอุดหนุนและสร้างเกษตรกรด้านแบบเป็นทบทวนเพื่อเตรียมการรองรับแนวทางเกษตรอินทรีย์ซึ่งเป็นจุดเริ่มต้นของการแนะนําเกษตรกรให้เปลี่ยนมาทำเกษตรอินทรีย์

3. การส่งออกข้าวอินทรีย์สู่ตลาดต่างประเทศต้องมีการรับรองที่แตกต่างกันไปในแต่ละประเทศ เพื่อแบ่งเบาภาระค่าใช้จ่ายของผู้บริโภค และเพื่อให้แน่ใจว่าเกษตรกรสามารถทำกำไรได้โดยส่งสินค้ารับรองเกษตรอินทรีย์ที่มีความน่าเชื่อถือ นโยบายส่งเสริมการผลิตข้าวอินทรีย์ควรเน้นไปที่การส่งเสริมการรวมกลุ่มของเกษตรกรในพื้นที่ซึ่งสามารถส่งออกข้าวอินทรีย์ได้

ประเด็นต่อไปที่ควรพิจารณาอย่างจริงจังในการย้ายกลุ่มเกษตรกรด้านแบบมีแนวโน้มไปให้แค่เกษตรกรที่เป็นเกษตรกรที่มีสภาพทางเศรษฐกิจและสังคมดีกว่าได้รับการยอมรับมากกว่าเกษตรกรที่มีสภาพทางเศรษฐกิจและสังคมแย่กว่า เนื่องจากเกษตรกรที่มีสภาพทางเศรษฐกิจและสังคมแย่กว่าในบางกลุ่มมีแนวโน้มที่จะเปลี่ยนกลับไปใช้วิธีปฏิบัติแบบดั้งเดิมในช่วงเปลี่ยนแปลงหากพบการประสบภัยอุปสรรคในการขอรับรอง รวมไปถึงผลิตภัณฑ์ที่จะขายในตลาดนี้ การรับรองข้าวอินทรีย์ที่มีการตรวจสอบในระดับประเทศจะคุ้มค่ากว่าการวางแผนการผลิตข้าวอินทรีย์ในระดับประเทศ เช่น ซึ่งไม่ควรควบคุมด้วยการรับรองมาตรฐานภูมิภาคในประเทศ "Organic Thailand" เท่านั้น แต่ยังรวมไปถึงการรับรองการส่งออกผลิตภัณฑ์ข้าวเกษตรอินทรีย์ของตนไปยังตลาดโลกอีกด้วย

นอกจากการรับรองแล้ว การเข้าสู่ตลาดต่างประเทศรายละเอียดเพิ่มเติมมีความสำคัญเช่นกันสำหรับเกษตรกร จากผลการศึกษา เกษตรกรที่มีประสบการณ์ในการเดินทางจนกว่าจะขยายผลผลิตได้ในราคามูลค่าแท้ที่เหมาะสมเกษตรสร้างเกษตรอินทรีย์ได้ รับความรู้สามารถสนับสนุนการพัฒนาตลาดเครื่องจักรการอุดหนุนไทยให้ตรงกับสายการผลิตและส่งผลให้เกษตรกรได้รับความรู้ในการผลิตข้าวอินทรีย์ได้สำเร็จแต่ไม่ทราบว่าจะมีโอกาสที่จะนั่นคือ พวกเขาไม่สามารถหาตลาดที่มีราคาสูงขึ้นสำหรับผลผลิตข้าวอินทรีย์ได้ เกษตรกรเหล่านี้มีต้นทุนในการหาตลาดสูงกว่าเกษตรกรที่มีประสบการณ์ที่ดี
4. โดยเฉลี่ยแล้ว ผลผลิตข้าวอินทรีย์จะต่ำกว่าผลผลิตข้าวธรรมดา แต่ก็ไม่มาก การสูญเสียรายได้จากผลผลิตที่ลดลงน้อยกว่าเกษตรกรผู้ปลูกข้าวอินทรีย์จะได้รับการชดเชยโดยตรงตราบใดที่เกษตรกรมาระยะข้าวอินทรีย์ได้ราคาที่สูงกว่าราคาปกติอย่างน้อยร้อยละ 3.5

ในด้านการสนับสนุนเกษตรกร สามารถส่งเสริมโดยการอุดหนุนราคาข้าวหรือรายได้สำหรับผลผลิตข้าวอินทรีย์ สำหรับในระยะยาว เมื่อพื้นที่ข้าวอินทรีย์เพิ่มขึ้นเป็นอย่างมากตามการคาดการณ์สถานการณ์จังหวัดที่ 3 (S3) และสถานการณ์จังหวัดที่ 4 (S4) ซึ่งพื้นที่ข้าวอินทรีย์ครอบคลุมเกือบร้อยละ 50 และ 90 ของพื้นที่ข้าวทั้งหมดในภาคตะวันออกเฉียงเหนือ ตามลำดับ อุปทานข้าวอินทรีย์จะเพิ่มขึ้นเป็นอย่างมาก หากความต้องการข้าวอินทรีย์จากตลาดในประเทศและตลาดโลกเพิ่มขึ้นพร้อมกับอุปทาน ราคาข้าวอินทรีย์ที่มีราคาสูงอยู่แล้วจะไม่ลดลง ผลที่ตามมาคือ ชาวนาจะยังได้รับผลกำไรมากขึ้นจากการผลิตข้าวอินทรีย์ และประชาชนจะยังคงได้รับผลกระทบภายนอกเชิงบวกที่เกิดจากการท่านข้าวอินทรีย์

อย่างไรก็ตาม ในกรณีที่ความต้องการข้าวอินทรีย์ไม่ลดลงคงกับอุปทานข้าวอินทรีย์ที่เพิ่มขึ้น จะส่งผลให้ราคาข้าวอินทรีย์ลดลงอย่างรวดเร็ว จากผลสัมฤทธิ์ของราคาผลผลิตข้าวอินทรีย์มีแนวโน้มดีกว่าผลผลิตจากการท่านข้าวแบบดั้งเดิมตามแนวโน้มในภาคตะวันออกเฉียงเหนือ หากข้าวอินทรีย์มีราคาเท่ากับข้าวธรรมดาเกษตรกรผู้ปลูกข้าวอินทรีย์จะได้ผลกำไรน้อยกว่าเกษตรกรผู้ปลูกข้าวแบบดั้งเดิม

เพื่อรับมือกับสถานการณ์นี้ ควรใช้โครงการอุดหนุนราคาหรือรายได้เพื่อจะได้ผลไปให้เกษตรกรผู้ปลูกข้าวอินทรีย์ที่เกษตรAoествоข้าวอินทรีย์ต่อไป จากการคาดการณ์ต้นทุนและผลผลิตในการศึกษาของเรา เกษตรกรผู้ปลูกข้าวอินทรีย์จะเห็นถึงความต้องการข้าวอินทรีย์ที่ดีกว่าข้าวธรรมดาในราคาอย่างน้อยร้อยละ 3.5 เทศสุดสุดท้ายในการเสนออุดหนุนเงินในสถานการณ์นี้เมื่อจากการวิเคราะห์สถานการณ์จังหวัดของเราแสดงให้เห็นว่าการปลูกข้าวแบบอินทรีย์สร้างผลกระทบถึงจากภาคที่สัมพันธ์ เมื่อผลผลิตจากภาคอักษณ์หลักนั้นไม่เป็นที่รู้อยู่โดยระบบตลาด ข้าวบาคลาวยังมีส่วนร่วมในการผลิตบัตรเป็นของตลาด เพื่อให้ไม่เพียงเฉพาะประชาชนยังคงได้รับประโยชน์จากผลผลิตภาคข้าวเกษตรกรผู้ปลูกข้าวอินทรีย์ นอกจากนี้เกษตรกรผู้ปลูกข้าวอินทรีย์ยังได้รับผลตอบแทนที่ไม่เพียงแต่ค่าน้ำถึงต้นทุนการเพาะปลูกเท่านั้น แต่ยังรวมถึงผลกระทบภายนอกเชิงบวกที่พวกเขาจะได้รับเพียงดังกล่าวได้รับการสร้างกลไกตลาดข้าวอินทรีย์จึงเป็นตัวอย่างที่มีความร่วมมือจากเอกชนและรัฐบาลหลายๆฝ่าย ไม่ได้จำกัดการพัฒนาเกษตรกรเท่านั้น ในด้านอุปทาน โรงสีก็เป็นส่วนสำคัญของการทำให้เกษตรกรมีรายได้ต้นทุนการผลิตข้าวสาร โรงสีก็ข้อต่อในการการรับรองมาตรฐาน GAP ตัวอย่าง

การสร้างกลไกตลาดข้าวอินทรีย์จึงเป็นตัวอย่างที่มีความร่วมมือจากเอกชนและรัฐบาลหลายฝ่ายไม่ได้จำกัดการเพิ่มพานเกษตรกรเท่านั้น ในด้านอุปทาน โรงสีก็เป็นส่วนสำคัญของการทำให้เกษตรกรมีรายได้ต้นทุนการผลิตข้าวสาร โรงสีก็ข้อต่อในการการรับรองมาตรฐาน GAP ตัวอย่าง

นอกจากนี้ การสร้างกลไกข้าวอินทรีย์จึงเป็นตัวอย่างที่มีความร่วมมือจากเอกชนและรัฐบาลหลายฝ่ายไม่ได้จำกัดการเพิ่มพานเกษตรกรเท่านั้น ในด้านอุปทาน โรงสีก็เป็นส่วนสำคัญของการทำให้เกษตรกรมีรายได้ต้นทุนการผลิตข้าวสาร โรงสีก็ข้อต่อในการการรับรองมาตรฐาน GAP ตัวอย่าง
มั่นใจว่าข้าวอินทรีย์มีจ่าหน่ายในตลาดทั่วไปและเป็นที่รู้จัก สำหรับตลาดต่างประเทศ การผลิตข้าวอินทรีย์ที่ขยายตัวจ่าเป็นต้องใช้งบประมาณที่ค่อนข้างขั้นตอนในตลาดต่างประเทศ และควรมีศูนย์ข้อมูลที่สามารถช่วยเกษตรกรและผู้ส่งออกในการหาตลาดที่มีศักยภาพ

การทำเกษตรอินทรีย์ยังมีประโยชน์ที่เชื่อมโยงกับเป้าหมายของประเทศไทยในการลดการปล่อยก๊าซเรือนกระจก วิธีให้น้ำแบบเปียกสลับแห้ง (AWD: Alternative Wetting and Drying) สามารถผลิตรองรับผลิตผลที่ดีได้ โครงการ Rice NAMA กำลังส่งเสริมการนำเทคนิค AWD และเทคนิคการข้าว การผลิตข้าวในภาคกลางของประเทศไทย และกำลังดำเนินการข้อมูลถูกกลุ่มเกษตรกรภายในเกษตรฟอรมข้าวเพื่อความยั่งยืน (SRP: Sustainable Rice Platform) เพื่อรักษาความสนใจในตลาดข้าวตลาดร้อน สามารถรับน้ำได้ในการจัดตั้งตลาดเกษตรอินทรีย์ควบคู่กับตลาดข้าวคาร์บอนต่ำ ร่วมกับการข้าว

การพัฒนาข้าวอินทรีย์ในประเทศไทยเป็นเรื่องสำคัญ เป็นประเด็นที่ต้องหามาตรการส่งเสริมและปรับปรุงตลาดที่ดี เนื่องจากมีคุณภาพและราคาระดับพรีเมียม ประเทศไทยไม่ควรแข่งขัน ด้วยการผลิตในปริมาณมากแต่ไม่ได้มาตรฐานที่มีอัตราการใช้ระยะในขณะที่สร้างผลกระทบต่อสิ่งแวดล้อมและสังคมทั้งในระดับประเทศและระดับนานาชาติที่ใช้

Gurr, Geoff M.; Lu, Zhongxian; Zheng, Xusong; Xu, Hongxing; Zhu, Pingyang; Chen, Guihua; Yao, Xiaoming; Cheng, Jiaan; Zhu, Zengrong; Catindig, Josie Lynn; Villareal, Sylvia; Van Chien, Ho; Cuong, Le Quoc; Channoo, Chairat; Chengwattana, Nalinee; Lan, La Pham; Hai, Le Huu; Chaiwong, Jintana; Nicol, Helen I.; Perovic, David J.; Wratten, Steve D.; Heong, Kong Luen (2016). *Multi-country evidence that crop diversification promotes ecological intensification of agriculture*. *Nature Plants*, 2(3), 16014–. doi:10.1038/nplants.2016.14

Horgan, Finbarr G.; Peñalver Cruz, Aina; Bernal, Carmencita C.; Ramal, Angelee Fame; Almazan, Maria Liberty P.; Wilby, Andrew (2018). Resistance and tolerance to the brown planthopper, Nilaparvata lugens (Stål), in rice infested at different growth stages across a gradient of nitrogen applications. *Field Crops Research*, 217: 53-65.

