TEEB Rice

Slideshow Presentation

Project Consortium

FAO

- Barbara Gemmill-Herren
- Renee Van Dis
- Anne Bogdanski

Trucost

- Chris Baldock
- Rick Lord

▶ IRRI

Finbarr Horgan

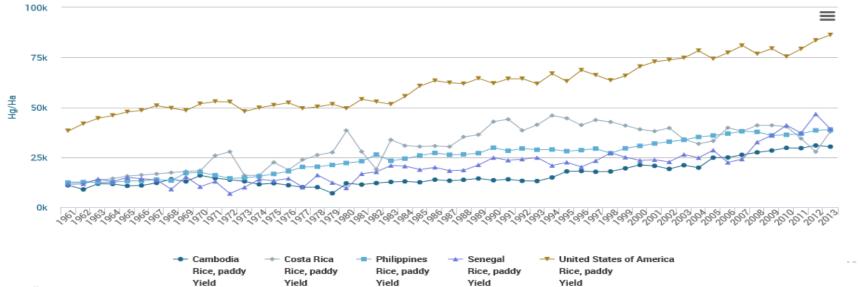
Bioversity

- ▶ Fabrice de Clerk
- Simon Attwood
- Marie Soleil

1. Introduction

- Central to the food security of half the world
- 144 million farms grow rice, the majority smaller than one hectare
- More than 90% of rice production and consumption is in Asia
- Several positive and negative externalities linked to rice production.

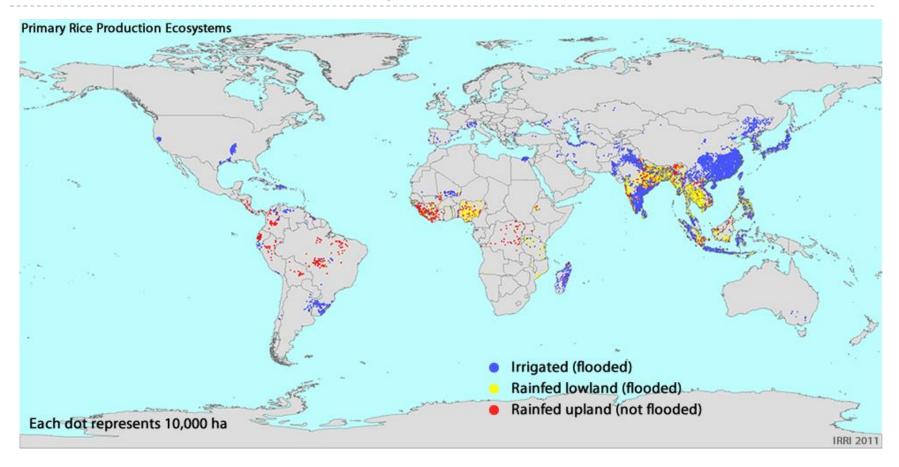
2. Study objectives


- To identify visible and <u>invisible</u> costs and benefits of rice agro-ecosystems; i.e. externalities
 - Which ecosystem services are linked to rice production?
 - Which types of environmental impacts does rice production have?
- To identify and assess those rice management practises and systems which reduce trade-offs and increase synergies
 - How do costs and benefits change with different management approaches?
- 3. To make these trade-offs and synergies visible
 - Assign biophysical or monetary values to the different options

3. Scope and framework

I. Selection of case study countries

- Global coverage
 - ▶ Philippines, Cambodia, Senegal, Costa Rica and California/USA
- From low intensified to high intensified production
 - ▶ 3.3 tons/ha in Cambodia (2013)
 - ▶ 9.5 tons/ha in California/USA (2013)


3. Scope and framework

II. Develop typology/structure of rice agriculture

- I. Level
 - Rice production systems/Rice growing environments
 - Irrigated Lowlands
 - Rainfed Lowlands
 - Rainfed Uplands
- 2. Level
 - Rice management systems and practices
 - ▶ 25 different system and practice category comparisons:
 - ☐ Business as usual alternative management practice
 - ☐ From land preparation to harvest

Rice production systems

Management practices and systems

1. Preplanting	Land preparation	Dry tillage – puddling				
		Land levelling – no levelling				
		Minimum soil disturbance – conventional tillage				
		No tillage – conventional tillage				
2. Growth	Planting	Direct seeding – transplanting				
		Dry seeding – wet seeding				
	Water management	Low irrigation frequency - high irrigation frequency				
		Improved water management - continuous flooding				
	Soil fertility management	Reduced mineral fertilizer use - high fertilizer application				
		No fertilizer use - high fertilizer application				
		Organic fertilizer application - mineral fertilizer application				
		Organic fertilizer application - no fertilizer application				
		Mineral + organic fertilizer application - mineral fertilizer application only				
	Weed management	No weed control - herbicide use				
		Biological weed control + hand weeding - herbicide use				
		Hand weeding – herbicide use				
		Reduced herbicide use – higher herbicide input				
	Pest and disease management	Non-chemical pest and disease control - pesticide use				
		Reduced pesticide use – higher pesticide input				
3. Postproduction	Residue management	Winter flooding – no winter flooding				
		Straw incorporation – straw burning				
		Straw baling and removal – straw burning				
		Straw rolling – straw burning				
Management system	ms					
		SRI – Conventional agriculture				
		Organic agriculture - Conventional agriculture				

3. Scope and framework

III. Identification of relevant policy/management issues

- 1. Increase rice yields
- 2. Maintain water quality
- 3. Reduce water use
- 4. Eliminate the burning of rice residues and thereby maintain air quality
- 5. Use rice residues as source for energy production
- 6. Reduce greenhouse gas emissions
- 7. Provide habitat for aquatic species to increase food provision and dietary diversity, ecosystem functioning and space for recreational activities
- 8. Maintain the regulation of nutrient cycling and soil fertility
- 9. Maintain an ecological balance which prevents pest outbreaks

3. Scope and framework

▶ IV. Identification of benefits...

	Dependency	Impact	Visible benefits	Invisible benefits	For whom? (Farmer F, Rural Community RC, Global community GC)	Primary data	Modelled data	Monetary Valuation
Rice grain		x	х		F, RC, GC	x		x
Dietary diversity		x		x	F, RC			
Rice straw		x	(x)	x	F		×	x
Rice husk		x	(x)	x	F		x	x
Biological control	×	x		x	F, RC, GC	(x)		(x)
Ecological resilience (pests)	×	x		×	F, RC; GC	(x)		
Nutrient cycling and soil fertility	x	×		×	F	×		
Carbon storage	x	x		x	F, GC			
Flood control	x	x		x	F, RC			
Groundwater recharge		×		×	F, RC		(x)	(x)
Habitat provisioning	x			x	F, RC	x		
Cultural services		x	х	x	F, RC, GC	(x)		

....and costs

	Dependency	Impact	Visible cost	S	Invisible costs	For whom? (Farmer F, Rural Community RC, Global community GC)	Primary data	Modelled data	Monetary valuation
Water pollution (Pesticide and herbicide run-off)		x			х	F, RC	х		x
Water pollution (Eutrophication)		x			x	F, RC		x	x
Air pollution (fertilizer)		x			х	F, RC		х	х
Air pollution (straw burning)		х			х	F, RC		х	х
Air pollution (combustion for energy)		x			х	F, RC		х	х
Water consumption	х				х	F, RC	x		x
GHG emissions		x			х	F, GC	х	(x)	х
Soil fertility loss		x			х	F		(x)	(x)
Wages	x		х			F	(x)		(x)
Fertilizer	x		х			F	х		х
Pesticides	х		Х			F	х		х
Fuel	х		Х			F			
Capital costs (e.g. machinery)	x		х			F			
Seeds	x		x			F	(x)		
Irrigation water	x		х		х	F			

Externalities

4. Biophysical quantification

▶ I. Development of narrative report

- Review of both peer reviewed and grey literature to identify management objectives/trade-offs related to rice farming in each country
- Identification of management practices and systems related to these trade-offs
- Development of assumptions/hypotheses how a change in management practice affects different agronomic and environmental variables, incl. ecosystem services

 Conventional weed management causes the pollution of water

Issues

Herbicides

Dependencies

- High rice yields
- Drinking water quality decreases
- Pollution of habitat for aquatic organisms and waterfowl
- Destruction of ecological infrastructure

Mitigation strategy

 Change from conventional weed management to alternative weed control to improve water quality issues

Impacts

 Mechanical, biological, cultural or genetic pest control; chemical in the context of Integrated Pest management

Change of practises

Dependencies

 Some control mechanisms are dependent on labour, biological control agents, and weed competitive rice varieties.

- Improved water quality
- Yields decrease or show no significant difference to conventional weed management
- Habitat for aquatic organisms and water fowl
- Labour intensity increases in some cases
- Ecological infrastructure is built

Impacts

4. Biophysical quantification

II. Data extraction

- Selection of appropriate response variables and indicators
- Development of standardized template to extract data from peer reviewed journal papers
- Data extraction
 - ▶ 1500 papers have been screened
 - ▶ 200 have been included in the narrative report
 - Data from 100 papers has been extracted for the biophysical quantification and monetary valuation
 - 7 response variables and 43 different indicators
 - ▶ In total, I 500 data points from 5 case study countries

Examples of response variables & indicators

Response variables	Indicators			
Freshwater saving	a.	Water use: Decrease of freshwater saving		
	b.	Water productivity: Water saving increased, as for the same amount of yield of		
		lower water productivity, water use is reduced		
	c.	Water holding capacity: Increase in water saving, as a higher amount of water		
		remains in the soil instead of seepage or run-off		
Mitigation of greenhouse	a.	Cumulative CH4 emission flux: Decrease in mitigation of GHG emissions		
gas emission	b.	Cumulative N2O emission flux: Decrease in mitigation of GHG emissions		
	c.	Global warming potential: Decrease in mitigation of GHG emissions		
	d.	Methyl bromide: Decrease in mitigation of GHG emissions		
	e.	Methyl chloride: Decrease in mitigation of GHG emissions		
	f.	Methyl lodide: Decrease in mitigation of GHG emissions		
Habitat provisioning	a.	Number of waterbird species: Increase in habitat provisioning		
	b.	Waterbird abundance: Increase in habitat provisioning		

4. Biophysical quantification

III. Vote-counting analysis

- To synthesize the results from all five case study countries: what are the effects of agricultural management practices and systems on different environmental, agronomic and ecosystem variables?
- Setting of standardized rules for vote-counting analysis
- ▶ 25 practice and system comparison categories

5. Monetary valuation

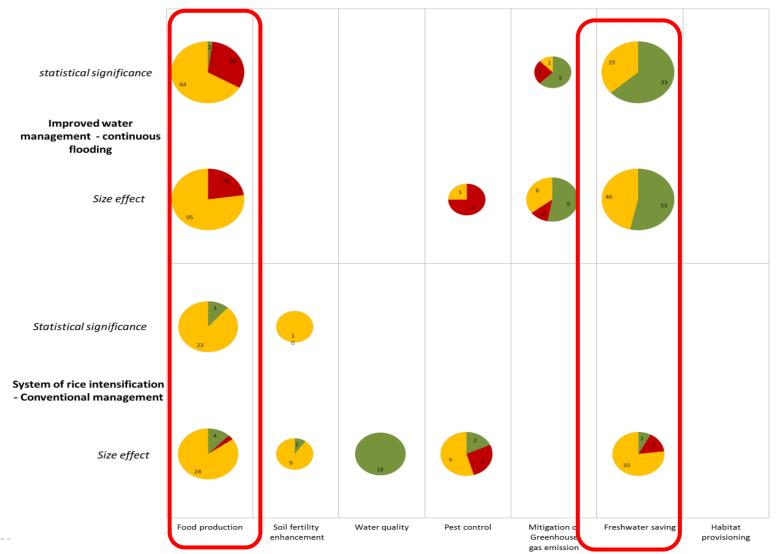
I. Biophysical Modelling

- Nutrient and water balance
 - Precipitation during growing period
 - Irrigation water used
- Greenhouse gas emissions from:
 - Methane from rice
 - Volatilization from fertilizer
- N, P, K content of:
 - Synthetic and organic fertilizers
 - Rice
 - Rice straw and husks
 - Rainwater

5. Monetary valuation

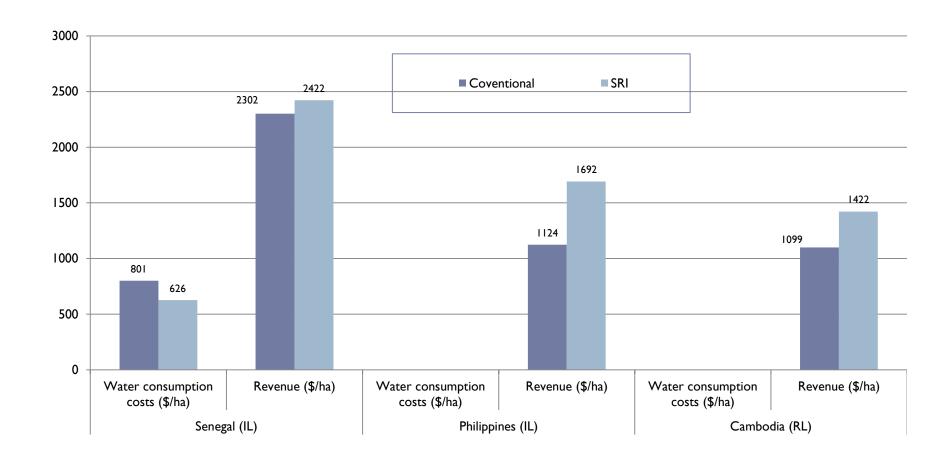
II. Valuation methodology

- Applied in rice, animal husbandry and palm oil projects
- Human health impact
 - Quantification unit: Disability adjusted life years (DALYs) lost
 - Monetary valuation: Value of a life year (VOLY)
- Ecosystem impact
 - Quantification unit: Potentially disappeared fraction (PDF) of species
 - Monetary valuation: Value of ecosystem services lost due to the disappearance of species


6. Results (Example 1)

Increase in Rice Yields Versus Reduction of Water Use

- Worldwide, 80 million hectares of irrigated lowland rice provide 75% of the world's rice production.
- ▶ 40% of the world's total irrigation water
- ▶ 30% of the world's developed freshwater resources.
- Water sources increasingly depleted due to competing water uses from the residential and industrial sector
- Rainfall is becoming more and more erratic due to climate change and variability.


Vote-counting analysis

Water consumption vs yields – Valuation

(SRI and conventional mgt: Senegal; Philippines and Cambodia)

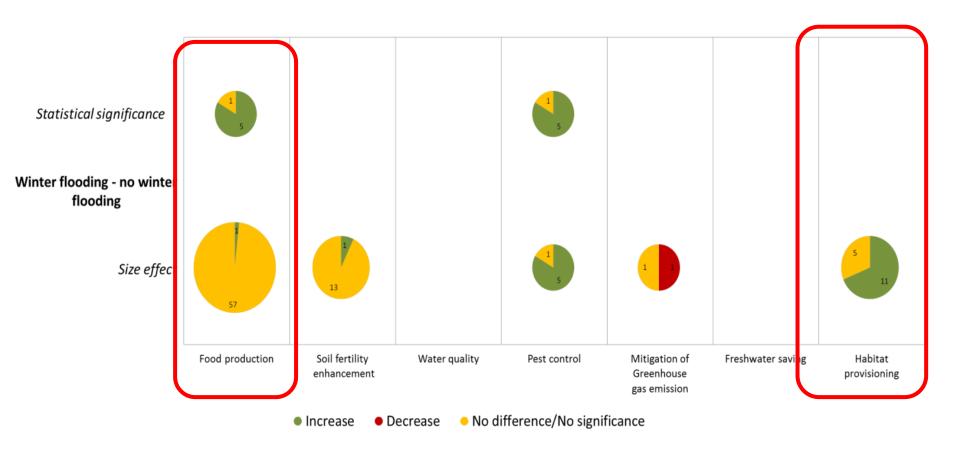
6. Results (Example 2)

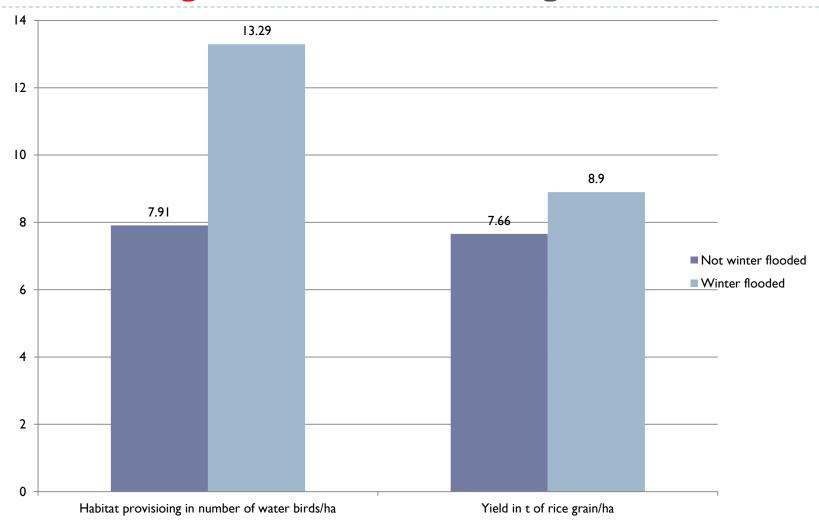
► INCREASE IN RICE YIELDS VERSUS HABITAT PROVISIONING

Rice paddies are artificial wetlands that provide habitat for a wide range of organisms such as aquatic plants, fish including crabs, prawns, turtles, and mollusks and water fowl.

Picture credits: Muthmainnah

Rice yields versus habitat provisioning


- A study in 1979 recorded 589 total species of organisms in a rice field in Thailand, of which 18 were species of fish and 10 were species of reptiles and amphibians (Halwart & Gupta, 2004).
- Several benefits related to habitat provisioning
 - Food provisioning and nutrition: Fish are a primary source of protein and micronutrients for rural communities
 - Cultural services such as recreation, fishing, bird watching and hunting
 - Many regulating services such as pest control, nutrient cycling



Vote counting analysis – Rice yields versus habitat provisioning in California

Quantification of habitat provisioning and yields for winter flooding and no winter flooding in California

7. Conclusions with regards to this trade-off analysis

Strength

- Robust trade-off analysis due to use of primary research data
- Shows opportunities and alternatives to current management practices instead of just pointing to costs of production

Weakness

- Not possible to mix with global assumptions where data is missing
- Based mostly on practice comparisons not on entire systems

Opportunities

- Solid basis for policy advise (change from practice A to practice B will decrease costs by...)
- Gives the opportunity to valuate regulating ecosystem services as a positive externality – not just an avoided cost

Threats

- Lengthy and work intensive approach
- Large data gaps

Thank you for your attention!

For more information, please contact: anne.bogdanski@fao.org

