# Appendix A2: Guidelines for the Pilot of NCAVES Project in Guangxi

**Report of the NCAVES Project** 





# **Guidelines for the Pilot of Natural Capital Accounting and Valuation of Ecosystem Services Project**

(Revised)



### Guangxi Zhuang Autonomous Region Bureau of Statistics

June 2019

#### Acknowledgements

This working document has been produced by the Guangxi Zhuang Autonomous Region Bureau of Statistics as part of the Natural Capital Accounting and Valuation of Ecosystem services (NCA&VES) project implemented by the United Nations Statistics Division, United Nations Environment Programme, the Secretariat of the Convention on Biological Diversity, and the European Union and funded by the European Union.

The contents of this report do not necessarily reflect the views or policies of United Nations and the contributory organizations.

Acknowledgements go to:

- National Bureau of Statistics of China for their strategic guidance and oversight of this project implementation
- The United Nations Statistics Division (UNSD) and United Nations Environment Programme (UNEP) for leading the NCA&VES project globally and supporting its management and implementation in China;
- The European Union for funding the Natural Capital Accounting and Valuation of Ecosystem Services (NCA&VES) Project and the Delegation of the European Union to China for supporting its implementation;
- Participants of meetings held in the assessment phase of the project, including the National Stakeholder Workshop.

| Chapter 1 Introduction to the Guideline             | 1  |
|-----------------------------------------------------|----|
| 1.1 Background                                      | 1  |
| 1.2 Main Concepts                                   | 2  |
| 1.3 Scope of Application                            | 3  |
| 1.4 Accounting Framework                            | 4  |
| 1.5 Accounts System for Natural Capital Accounting  | 4  |
| 1.6 Monetary methods                                | 25 |
| 1.7 Source of Basic Data                            | 27 |
| 1.8 Normative References                            |    |
| 1.9 Further Introduction                            | 29 |
| Chapter 2 Valuation of Forest Ecosystem Services    |    |
| 2.1 Valuation Scope                                 |    |
| 2.2 Valuation Indicators System                     |    |
| 2.3 Physical Methods                                |    |
| 2.4 Monetary methods                                |    |
| 2.5 Accounts for Forest Ecosystem Accounting        |    |
| Chapter 3 Valuation of Grassland Ecosystem Services | 44 |
| 3.1 Valuation Scope                                 | 44 |
| 3.2 Valuation Indicators System                     | 44 |
| 3.3 Physical methods                                | 45 |
| 3.4 Monetary methods                                | 48 |
| 3.5 Accounts for Grassland Ecosystem                | 51 |
| Chapter 4 Valuation of Wetland Ecosystem Services   | 56 |
| 4.1 Valuation Scope                                 | 56 |
| 4.2 Valuation Indicators System                     | 56 |
| 4.3 Physical methods                                | 57 |
| 4.4 Monetary methods                                | 58 |
| 4.5 Accounts for Wetland Ecosystem                  | 60 |
| Chapter 5 Valuation of Farmland Ecosystem Services  | 64 |

## Contents

#### **Chapter 1 Introduction to the Guideline**

#### 1.1 Background

The rapid development of urbanization and industrialization has led to many problems and challenges in ecological environment. The decline of biodiversity, ecosystem degradation and land resource degradation have not only seriously affected the structure, process and function of ecosystems, but also seriously affected human well-being. With the development of ecology, people have enhanced their cognitive knowledge about ecosystem, various stakeholders have gradually recognized the importance of ecosystem. The application of the concept of sustainable use of resources in the management of ecological environment is being highly expected.

In 2014, the United Nations and other international organizations officially published the System of Environmental-Economic Accounting 2012: Central Framework (abbreviated as SEEA CF), which is a multipurpose conceptual framework for understanding the interactions between the environment and the economy. As it provides an internationally agreed concept and definition of Environmental-Economic Accounting, it becomes a powerful tool for collecting comprehensive statistical data, developing consistent and comparable statistical indicators, and measuring the process of sustainable development. The System of Environmental-Economic Accounting 2012: Experimental Ecosystem Accounting (abbreviated as SEEA EEA) co-published by the United Nations and other international organizations in 2014 elaborates the principles of ecosystem accounting, physical accounting of ecosystem services and ecosystem assets, methods for the valuation of ecosystem services and ecosystem assets, ecosystem value accounting and other main contents, thereby initially establishing the theoretical basis of ecosystem accounting. At the end of 2017, the United Nations developed the Technical Recommendations in Support of the System of Environmental-Economic Accounting 2012 - Experimental Ecosystem Accounting (White Paper), which includes a series of research results on the development of ecosystem accounting from 2013 to 2015, and reflects the increasing knowledge and experience about several ecosystem accounting projects and programs as effectively as possible. By further clarifying the main measurement objectives, core evaluation concepts and measurement paths of ecosystem accounting, and confirming the conceptual development of ecosystem accounting, it enables ecosystem accounting to have clearer thinking and be easier to operate.

In order to scientifically guide the valuation of ecosystem services in Guangxi, since August 2016, the Statistical Bureau of Guangxi Zhuang Autonomous Region has widely referred to domestic and foreign literature, and taken the lead in formulating the *Guidelines for the Valuation of Ecological Services in Guangxi*, which was used to guide the valuation of ecological services in Guangxi. It completed the valuation of ecosystem services in the whole region in 2015, 2016 and 2017, and achieved phased results. In November 2017, Guangxi was designated as one of the pilot areas in China for the Natural Capital Accounting and Valuation of Ecosystem Services Project (NCA&VES) at the Start-up and Consultation Meeting of China Natural Capital Accounting and Valuation of

Ecosystem Services Project, which was jointly organized by the National Bureau of Statistics, the United Nations and the European Union in Beijing. The NCA&VES project is funded by the European Union and jointly implemented by the United Nation Statistics Division (UNSD), United Nations Environment Program (UNEP), in close collaboration with the Secretariat of the Convention of Biodiversity and national stakeholders such as the NBS in China.

From May 21 to 23, 2018, a project assessment mission from the United Nations Statistics Division visited Guangxi and gave some instructions on the technical problems encountered in the pilot work in Guangxi. From March 24 to 27, 2019, the second project assessment mission from the United Nations Statistics Division led by Mr. Bram Edens visited Guilin city and and gave some further suggestions on the Guangxi pilot work. In order to provide scientific guidance on the pilot work of the NCA&VES Project in Guangxi, based on the consensus reached at the start-up meeting of the NCA&VES Project, and combining with specific requirements of expert team set up by the National Bureau of Statistics and the United Nations for the Natural Capital Accounting and Valuation of Ecosystem Services Pilot Project, the Statistical Bureau of Guangxi Zhuang Autonomous Region organized relevant professionals to revise the original Guidelines for the Valuation of Ecological Services in Guangxi from four aspects: clarifying relevant concepts and classifications, determining the physical quantity of different types of ecosystem services, unifying and standardizing the Monetary methods for different types of ecosystem services (including selecting the values of relevant coefficients, etc.), and standardizing the basic area data to calculate the value of different types of ecosystem services, thereby forming the Guidelines for the Pilot of Natural Capital Accounting and Valuation of Ecosystem Services Project.

#### 1.2 Main Concepts

#### **1.2.1 Natural Resources**

It is specified in paragraph 18, Chapter 5, SEEA CF that: Natural resources are a sub-set of environmental assets. Natural resources include all natural biological resources (including timber and aquatic resources), mineral and energy resources, soil resources and water resources. All cultivated biological resources (such as crops) and land are excluded from scope. From the perspective of various environmental assets, which are components that provide materials and space for economic activities, the environmental assets of SEEA CF consist of natural resources, land and cultivated biological resources.

#### **1.2.2 Environmental Assets**

As defined in paragraph 17, Chapter 2, SEEA CF, environmental assets are the naturally occurring living and non-living components of the Earth, together comprising the bio-physical environment, that may provide benefits to humanity. This definition is the basis of environmental-economic accounting system. In SEEA CF, the physical measurement scope of environmental assets is broader than the monetary measurement scope, the reason is that according to the market valuation principle of the System of National Accounts, the monetary measurement scope is limited to assets that have

economic value from the monetary perspective.

#### 1.2.3 Natural Capital

SEEA does not define natural capital, nor use the term "natural capital". There are many different definitions of natural capital, which are developed from various original intentions. The most appropriate definition of natural capital in SEEA is the definition of environmental assets, that is, "Environmental assets are the naturally occurring living and non-living components of the Earth, together comprising the bio-physical environment, that may provide benefits to humanity" (SEEA CF 2.17).

#### 1.2.4 Ecosystem Assets

Ecosystem accounting is based on the relationship between stocks and flows. The stock of ecosystem accounting is calculated by spatial region, and each spatial region constitutes an ecosystem asset. Each ecosystem asset has a series of characteristics, such as land cover, biodiversity, soil type, elevation, slope, and climate, that describe the operational status and location of the ecosystem. Some characteristics are considered relatively fixed (e.g. slope and elevation), while others may be more changeable (e.g. precipitation, land cover and biodiversity).

#### **1.2.5 Ecosystem Services**

According to the *SEEA Experimental Ecosystem Accounting (SEEA EEA)*, **ecosystem services are the contributions of ecosystems to benefits used in economic and other human activity**. The SEEA EEA adopts three widely recognized ecosystem services categories: provisioning services, regulating services and cultural services. The relationship between ecosystems' provisioning services, regulating services and cultural services and the System of National Accounts (SNA) production boundary is as follows: provisioning services are included as goods and services within the SNA production boundary (SNA benefits), and hence measuring the provisioning services will have no impact on GDP because the output of ecosystem services is offset by recording an input to the production of the SNA benefits; ; regulating services is outside the SNA production boundary and will contribute to a direct increase in the benefits ; cultural services could be within or outside the production boundaries.

#### **1.3 Scope of Application**

According to the land cover characteristics of Guangxi, in this Guideline ecosystems are divided into six categories: forest ecosystem, grassland ecosystem, farmland ecosystem, wetland ecosystem, urban ecosystem and, marine ecosystem. The valuation contents cover the physical and monetary of ecosystems' provisioning services, regulating services and cultural services. The specified indicators system, indicator calculating methods and evaluation result account table for natural capital accounting and valuation of ecosystem services can be used to evaluate the development status and trend of natural capital and ecosystem services in the administrative regions of Guangxi at all levels. They can also be used separately to account for forest ecosystem, grassland ecosystem,

farmland ecosystem, wetland ecosystem, urban ecosystem or marine ecosystem in Guangxi.

#### **1.4 Accounting Framework**

In this Guidelines, the idea of natural capital accounting originates from the accounting of stocks and flows in economic assets; the idea of ecosystem accounting originates from the Valuation of ecosystem services' functions and their ecological-economic value and the SNA. The accounting of natural capital and ecosystem services is divided into accounting for stocks and accounting for flows. Stocks and flows are both physical quantities (or physical amount) and can be measured in monetary terms. The stocks of natural capital and ecosystems are mainly measured in terms of area, distribution, quality grade and so on. The flows of natural capital and ecosystems, i.e. asset flows, refer to the abiotic and biotic services arising from stocks, including material circulation, energy flow, ecosystem services etc.



Figure 1-1 Accounting Framework for Natural Capital Accounting and Valuation of Ecosystem Services Project Pilot in Guangxi

#### 1.5 Accounts System for Natural Capital Accounting

By drawing general references from the SEEA CF, *SEEA Experimental Ecosystem Accounting* and the *Technical Recommendations in Support of the System of Environmental-Economic Accounting* 2012-Experimental Ecosystem Accounting (White Paper), this Guidelines sets up three types of accounts for accounting: asset accounts for natural resources, asset accounts for ecosystems, and accounts for ecosystem services.

#### **1.5.1 Asset Accounts for Natural Resources**

#### **1.5.1.1 Asset Accounts for Land Resources**

Land is the core content of environmental-economic accounting. Land is a unique environmental asset, a place for economic activity and environmental evolution, and a location of environmental assets and economic assets. Although the term "land" usually refers to land areas, it also applies to water-covered areas in the SEEA. The SEEA land account includes areas covered by inland water resources such as rivers and lakes.

#### (1) Land Use Accounts

According to the *Current Land Use Classification* (GB/T21010—2017), which is a standard for the classification of land use developed by the Ministry of Natural Resources of China, land use mainly includes eight categories: cultivated land, garden plot, forest land, grassland, Land for urban village, mining and manufacturing sites, land for traffic and transportation, other land and land for water conservancy establishment. There are eight types of water areas, including river water surface, lake water surface, reservoir water surface, pond water surface, coastal beaches, inland beaches, ditches, glaciers and permanent snow.

| Serial No. | Category                                    | Corresponding land use classification by SEEA CF                       |
|------------|---------------------------------------------|------------------------------------------------------------------------|
| 1          | Land                                        | Land                                                                   |
| 1.1        | Farmland                                    | Agriculture                                                            |
| 1.2        | Garden plot                                 | Agriculture, forestry                                                  |
| 1.3        | Forest land                                 | Forestry                                                               |
| 1.4        | Grassland                                   | Agriculture                                                            |
| 1.5        | Urban and industrial land                   | Construction land and related areas                                    |
| 1.6        | Land for traffic and transportation         | Construction land and related areas                                    |
| 1.7        | Other land                                  | Other lands that are not classified for other purposes,<br>unused land |
| 1.8        | Land for water conservancy<br>establishment | Construction land and related areas                                    |

#### Table 1-1 Comparison of the Land Use Classification of SEEA CF and Current Land Use Classification in China

| Serial No. | Category                    | Corresponding land use classification by SEEA CF                                     |
|------------|-----------------------------|--------------------------------------------------------------------------------------|
| 2          | Water areas                 | Inland waters                                                                        |
| 2.1        | River water surface         |                                                                                      |
| 2.2        | Lake water surface          | Inland waters used for aquaculture or holding facilities,                            |
| 2.3        | Reservoir water surface     | inland waters used for the maintenance and restoration                               |
| 2.4        | Pond water surface          | of chynolinichtal functions                                                          |
| 2.5        | Coastal beaches             |                                                                                      |
| 2.6        | Inland beaches              | Inland waters used for the maintenance and restoration<br>of environmental functions |
| 2.7        | Ditches                     | Inland waters used for the maintenance and restoration<br>of environmental functions |
| 2.8        | Glaciers and permanent snow | Unused inland waters                                                                 |

Giving consideration to the basis of land use classification developed by the Ministry of Natural Resources of China and the availability of data, the following physical account for land use is established:

|                  |          |             |             | I         | and                       |                      |            |                            |                     |                    | ١                       | Wate               | r Are           | eas            |         |                             |       |
|------------------|----------|-------------|-------------|-----------|---------------------------|----------------------|------------|----------------------------|---------------------|--------------------|-------------------------|--------------------|-----------------|----------------|---------|-----------------------------|-------|
|                  | Farmland | Garden plot | Forest land | Grassland | Urban and industrial land | Land for traffic and | Other land | Land for water conservancy | River water surface | Lake water surface | Reservoir water surface | Pond water surface | Coastal beaches | Inland beaches | Ditches | Glaciers and permanent snow | Total |
| Opening<br>stock |          |             |             |           |                           |                      |            |                            |                     |                    |                         |                    |                 |                |         |                             |       |

Table 1-2 Physical Account for Land Use (Unit: Hectare)

| to stock | Additions |  |  |  |  |  |  |  |  |  |
|----------|-----------|--|--|--|--|--|--|--|--|--|
| in stock | Reduction |  |  |  |  |  |  |  |  |  |
| stock    | Closing   |  |  |  |  |  |  |  |  |  |

Note: The accounting period is 1 year. The data in the table are derived from the data about annual land use change and current classification released by natural resources departments.

#### (2) Account for Land Cover

Land cover refers to the physical and biological cover that can be observed over the surface of land, including natural vegetation and abiotic (inanimate) cover. According to the requirements of SEEA CF, for the purposes of land cover statistics, the relevant area includes only land and inland waters, while coastal waters and intertidal zones are excluded.

| Serial<br>No. | Land cover            | Corresponding cover classification of SEEA<br>CF | Ecosystem type   |
|---------------|-----------------------|--------------------------------------------------|------------------|
| 1             | Wet crops             | Herbaceous crops                                 | Farmland         |
| 2             | Dryland crops         | Herbaceous crops, woody crops                    | ecosystem        |
| 3             | Chinese fir           | Tree covered area                                |                  |
| 4             | Pines                 | Tree covered area                                |                  |
| 5             | Broad-leaved trees    | Tree covered area                                |                  |
| 6             | Eucalyptus<br>species | Tree covered area                                | Forest ecosystem |
| 7             | Arbor economic forest | Tree covered area                                |                  |
| 8             | Bamboo forest         | Tree covered area                                |                  |

#### Table 1-3 Comparisons of the Land Cover Classification of This Guidelines and the Land Cover Classification of SEEA CF

| Serial<br>No. | Land cover                              | Corresponding cover classification of SEEA<br>CF                  | Ecosystem type         |
|---------------|-----------------------------------------|-------------------------------------------------------------------|------------------------|
| 9             | Shrub forest in<br>artificial<br>mounds | Shrub covered area                                                |                        |
| 10            | Shrub forest in stone hills             | Shrub covered area                                                |                        |
| 11            | Shrub economic forest                   | Woody crops, shrub covered area                                   |                        |
| 12            | Grassland                               | Grassland                                                         | Grassland<br>ecosystem |
| 13            | Marsh                                   | Aquatic or periodically submerged shrubs or herbaceous vegetation |                        |
| 14            | Inland beaches                          | Aquatic or periodically submerged shrubs or herbaceous vegetation | Wetland<br>ecosystem   |
| 15            | Land surface<br>water                   | Inland waters                                                     |                        |
| 16            | Mangroves                               | Mangroves                                                         | Marine ecosystem       |
| 17            | Coastal beaches                         | Nearshore waters and intertidal zones                             |                        |
| 18            | Parks and green land                    | Tree covered area, shrub covered area, grassland                  | Urban ecosystem        |

The structure of land cover account is similar to that of the land use account. The physical account for land cover is as follows:

#### Table 1-4 Land Cover Account (Unit: Hectare)

|           | Wet crop | Drvland crops | Chinese fir | Pines | Broad-leaved trees | Eucalyptus species | Arbor economic forest | Bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest | Grassland | Inland beaches | Land surface water | Mangroves | Coastal beaches | Parks and green land | Other land | Total |
|-----------|----------|---------------|-------------|-------|--------------------|--------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|-----------|----------------|--------------------|-----------|-----------------|----------------------|------------|-------|
| Opening   |          |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |                |                    |           |                 |                      |            |       |
| Additions |          |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |                |                    |           |                 |                      |            |       |
| Reduction |          |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |                |                    |           |                 |                      |            |       |
| Closing   |          |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |                |                    |           |                 |                      |            |       |

Note: The accounting period is 1 year. The data in the table are derived from the data about annual land use change and current classification released by natural resources departments, and the data about forest land change results of forestry departments.

A land cover change matrix shows land cover at two different points in time (Table 1-5). It shows the area of different land cover types at the beginning of the reference period (opening area), the increases and decreases of this area according to the land cover type it was converted from (in the case of increases), or what it was converted to (in the case of decreases), and finally, the area covered by different land cover types at the end of the reference period (closing area).

#### Table 1-5 Land Cover Change Matrix (Unit: Hectare)

|                       | Wet crops | Dryland crops | Chinese fir | Pines | Broad-leaved trees | eucalyptus species | Arbor economic forest | bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest | Grassland | Marsh | Inland beaches | Land surface water | Mangroves | Coastal beaches | Parks and green land |
|-----------------------|-----------|---------------|-------------|-------|--------------------|--------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|-----------|-------|----------------|--------------------|-----------|-----------------|----------------------|
| Wet crops             |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Dryland crops         |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Chinese fir           |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Pines                 |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Broad-leaved trees    |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Eucalyptus species    |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Arbor economic forest |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Bamboo forest         |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |

|                                   | Wet crops | Dryland crops | Chinese fir | Pines | Broad-leaved trees | eucalyptus species | Arbor economic forest | bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest | Grassland | Marsh | Inland beaches | Land surface water | Mangroves | Coastal beaches | Parks and green land |
|-----------------------------------|-----------|---------------|-------------|-------|--------------------|--------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|-----------|-------|----------------|--------------------|-----------|-----------------|----------------------|
| Shrub forest in artificial mounds |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Shrub forest in stone hills       |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Shrub economic forest             |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Grassland                         |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Marsh                             |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Inland beaches                    |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Land surface water                |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Mangroves                         |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |
| Coastal beaches                   |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |

|                      | Wet crops | Dryland crops | Chinese fir | Pines | Broad-leaved trees | eucalyptus species | Arbor economic forest | bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest | Grassland | Marsh | Inland beaches | Land surface water | Mangroves | Coastal beaches | Parks and green land |
|----------------------|-----------|---------------|-------------|-------|--------------------|--------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|-----------|-------|----------------|--------------------|-----------|-----------------|----------------------|
| Parks and green land |           |               |             |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |

Note: The accounting period is 1 year. The data in the table are derived from the data about annual land use change and current classification released by natural resources departments, and the data about forest land change results of forestry departments.

#### 1.5.1.2 Asset Account for Forest Land Resources

According to the *Technical Regulations for Continuous Inventory of National Forest Resources*, the forest land in China includes wooded land, sparse wood land, shrub land, immature forest land, nursery gardens, wood land without stumpage, land suitable for forestation and auxiliary forestry land. The main classifications and related definitions of forest land are listed in Table 6.

|                | Classificat    | ion                               | Definition                                                                                                                                                                                                                                                                                  |  |  |  |  |
|----------------|----------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                |                | Arbor forest                      | A forest or forest belt composed of arbors (including dwarfing species due to artificial cultivation), with crown density≥0.20. The forest belt has more than 2 rows, with row spacing not exceeding 4 m, or the horizontal projection width of canopy is more than 10 m.                   |  |  |  |  |
|                | Wooded<br>land | Mangroves                         | Located in tropical and subtropical coastal intertidal zones or<br>estuaries of rivers that can be reached by tidal currents, the forests<br>that have mangrove plants or other families and genera with similar<br>community characteristics in morphology and ecology.                    |  |  |  |  |
|                |                | Bamboo<br>forest                  | A forest land that has bamboo plants, which have DBH of over 2cm.                                                                                                                                                                                                                           |  |  |  |  |
| Forest<br>land | Sparse w       | ood land                          | A forest land that has arbor species, with crown density between 0.10 and 0.19                                                                                                                                                                                                              |  |  |  |  |
|                | Shru           | b land                            | A forest land that has shrub species, shrubby tree species that are dwarfed due to bad ecological environment, and small mixed bamboo bushes with DBH of less than 2cm, which cover more than 30% of forest land. The shrub belt should have more than 2 rows, with row spacing $\leq 2m$ . |  |  |  |  |
|                | Immature       | Unforested<br>reproducing<br>land | A free-to-grow immature forest land that has the potential to be a forest, which is formed through artificial afforestation (including seedling planting, sowing, clonal afforestation) and aerial seeding afforestation, with seedlings being evenly distributed.                          |  |  |  |  |
|                | forest land    | Unforested<br>enclosed land       | A free-to-grow forest land that has the potential to be a for<br>which is formed through natural regeneration through nat<br>change, closure of hills or artificial promotion of nat<br>regeneration, it does not exceed the mature age, and its nat<br>regeneration grade is above medium. |  |  |  |  |

#### Table 1-6 Forest Land Classification in China and Related Definitions

| Classificat                      | ion                                                                    | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|----------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Nurser                           | y garden                                                               | A fixed nursery land used for growing seedlings for forest, trees and flowers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|                                  | Cutover land                                                           | The forest land where the living standing timbers fail to reach the standard of sparse wood land within three years after logging, or has not reached the medium grade through artificial or natural regeneration.                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                  | Burned area                                                            | The forest land where the living standing timbers fail to reach the standard of sparse wood land within three years after a fire disaster, or has not reached the medium grade through artificial or natural regeneration.                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Wood land<br>without<br>stumpage | Cutover land                                                           | The deforested land where the reserved trees fail to meet the standard of sparse wood land within 5 years after logging.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                  | Other<br>woodland<br>without<br>stumpage                               | The afforestation land that fails to meet the standard of immature<br>forest land when reach the mature years after afforestation renewal;<br>the forest land that fails to meet the standards of wooded land, shrub<br>land or sparse wood land around mature years; the forest land that<br>has been prepared but has not yet been afforested; the woodland<br>without stumpage that does not meet the above-mentioned regional<br>conditions, but it is proved to be wooded land, and is retained for<br>natural protection, scientific research, forest fire prevention or other<br>purposes. |  |  |  |  |  |  |
| Land                             | Waste<br>mountains<br>and<br>wastelands<br>suitable for<br>forestation | The waste mountains, waste beaches, ravines and waste lands that<br>are planned as forest land by people's government at county level<br>or above, but fail to meet the above standards of wooded land,<br>sparse wood land, shrub land and immature forest land.                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| suitable for<br>forestation      | Sandy<br>wasteland<br>suitable for<br>forestation                      | Failing to meet the above standards of wooded land, sparse wood<br>land, shrub land and immature forest land, but the trees can survive.<br>The fixed or mobile sand land (dune) and land with obvious<br>desertification trend that are planned to be used as forest land.                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|                                  | Other land<br>suitable for<br>forestation                              | Other land that is planned to be used for forestry development by people's governments at county level or above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |

| Classification                                 | Definition                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Auxiliary land used for<br>forestry production | Land used for construction facilities (including supporting facilities) directly serving forestry production and other land with forest land ownership certificate. |  |  |  |  |  |  |  |  |  |

In view of the inconsistency of land use classification standards between forestry departments and former land departments, the asset account for forest land is set up separately.

#### (1) Forest Land Use Account

|                    | W                         | ooded la | nd            | Spar         | Shrut                       | and                | Othe          | Tota |  |
|--------------------|---------------------------|----------|---------------|--------------|-----------------------------|--------------------|---------------|------|--|
|                    | Mangroves<br>Arbor forest |          | Bamboo forest | se wood land | National special shrub land | General shrub land | r Forest land |      |  |
| Opening stock      |                           |          |               |              |                             |                    |               |      |  |
| Additions to stock |                           |          |               |              |                             |                    |               |      |  |
| Reduction in stock |                           |          |               |              |                             |                    |               |      |  |
| Closing stock      |                           |          |               |              |                             |                    |               |      |  |

#### Table 1-7 Forest Land Use Account (Unit: Hectare)

Note: The data in the table are mainly derived from forestry departments' continuous inventory data of forest resources.

#### (2) Forest Land Cover Account

Forest land cover account has the same structure with land use accounts. The account is developed according to the area of different tree species.

Table 1-8 Forest Land Cover Account (Unit:Hectare)

|                    | Chinese fir | Pines | Broad-leaved trees | Eucalyptus species | Arbor economic forest | Bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest | Total |
|--------------------|-------------|-------|--------------------|--------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|-------|
| Opening stock      |             |       |                    |                    |                       |               |                                   |                             |                       |       |
| Additions to stock |             |       |                    |                    |                       |               |                                   |                             |                       |       |
| Reduction in stock |             |       |                    |                    |                       |               |                                   |                             |                       |       |
| Closing stock      |             |       |                    |                    |                       |               |                                   |                             |                       |       |

Note: The data are collected from the forest land change survey of forestry departments.

#### 1.5.1.3 Asset Accounts for Timber Resources

#### (1) Physical Asset Account for Timber Resources

The physical quantity of timber resources often refers to the stock of standing timber. The physical asset account for timber resources records the opening stock and closing stock of timber resources during the accounting period, as well as the stock changes during the accounting period. The basic structure is shown in the table below.

|                     |       | Forests |       |       |         |            |       |            |              |                       |                 |       |  |  |  |
|---------------------|-------|---------|-------|-------|---------|------------|-------|------------|--------------|-----------------------|-----------------|-------|--|--|--|
|                     | Total |         |       | Arbor | fores   | t          |       | Ban<br>for | nboo<br>rest | Nati<br>Specia<br>for | Other<br>timber |       |  |  |  |
|                     |       |         | Total |       | Natural | Artificial |       | Natural    | Artificial   | Natural               | Artificial      |       |  |  |  |
|                     | Area  | Area    | Stock | Area  | Stock   | Area       | Stock | Area       |              |                       | Area            | Stock |  |  |  |
| Opening stock       |       |         |       |       |         |            |       |            |              |                       |                 |       |  |  |  |
| Additions to stock  |       |         |       |       |         |            |       |            |              |                       |                 |       |  |  |  |
| Reductions in stock |       |         |       |       |         |            |       |            |              |                       |                 |       |  |  |  |
| Closing stock       |       |         |       |       |         |            |       |            |              |                       |                 |       |  |  |  |

Table 1-9 Physical Asset Account for Timber Resources (Unit: Hectare, Cubic Metre)

Note: The data are collected from forestry departments' continuous inventory data of forest resources, or the forest land change survey of forestry departments.

#### (2) Monetary Account for Timber Resources

The monetary account for timber resources consists of measuring the monetary value of the opening and closing stock of timber resources and the changes in the value of the stock over an accounting period. The resource rent method is used to obtain the unit resource rent of timber resources, which is then multiplied by estimates of the expected volume of standing timber per hectare at the expected harvesting age to give estimates of future receipts. Then net present value (NPV) approach is used to discount these future receipts (from the current period to the expected harvesting period), so as to estimate a value per hectare for each age class. In turn, these values are multiplied by the total area of each age class and added to give the value of the total stock of standing timber.

|                    | Types of timber             | resources                                      |       |
|--------------------|-----------------------------|------------------------------------------------|-------|
|                    | Cultivated timber resources | Natural timber resources<br>(timber available) | Total |
| Opening stock      |                             |                                                |       |
| Additions to stock |                             |                                                |       |
| Reduction in stock |                             |                                                |       |
| Revaluations       |                             |                                                |       |
| Closing stock      |                             |                                                |       |

#### Table 1-10 Monetary Account for Timber Resources (Unit: RMB 10,000)

#### (3) Carbon Asset Account for Timber Resources

The carbon asset account for timber resources is developed based on the structure of physical asset account for timber resources, and combining IPCC land use change and the method for compiling forestry greenhouse gas inventory. The additions to stock during the accounting period mainly include the increase in carbon caused by the natural growth of trees and the adjustment of planting structure. The Reduction in stock mainly includes the release of carbon caused by logging, the adjustment of planting structure and the change of land use pattern.

| Table 1-11 | <b>Carbon As</b> | set Account f | or Timber | Resources | (Unit: Ton) |  |
|------------|------------------|---------------|-----------|-----------|-------------|--|
|------------|------------------|---------------|-----------|-----------|-------------|--|

|                    | Arbor forest | Bamboo forest | National special shrub forest | Other trees | Total |
|--------------------|--------------|---------------|-------------------------------|-------------|-------|
| Opening stock      |              |               |                               |             |       |
| Additions to stock |              |               |                               |             |       |
| Reduction in stock |              |               |                               |             |       |
| Closing stock      |              |               |                               |             |       |

Note: The basic data are collected from forestry departments' inventory data of forest resources,

#### 1.5.1.4 Asset Account for Water Resources

The natural circulation of water, namely hydrological circulation, involves the connections between atmosphere, ocean, surface water and underground water. The physical asset account for water resources is compiled according to different types of water resources, the opening and closing stocks

of water and the changes in water stock during the accounting period are measured. In the account, the unit of water resources is 1 million cubic meters. When calculating changes in water stock, consideration should be given to additions to stock, reduction in stock and other changes in stock. By drawing references from *the compilation system of national natural resource asset balance sheet,* the structure of the physical asset account for water resources is shown as follows.

|                                                            | S          | urface wat | er    | Undergro  |       |
|------------------------------------------------------------|------------|------------|-------|-----------|-------|
|                                                            | Reservoirs | Rivers     | Lakes | und water | Total |
| Opening stock                                              |            |            |       |           |       |
| Additions to stock                                         |            |            |       |           |       |
| Water resources formed by precipitation                    |            |            |       |           |       |
| Inflows and inputs                                         |            |            |       |           |       |
| Inflows from outside the region                            |            |            |       |           |       |
| Inputs from outside the region                             |            |            |       |           |       |
| Inflows from other water bodies in the region              |            |            |       |           |       |
| Other water sources                                        |            |            |       |           |       |
| Return from economic and social water consumption          |            |            |       |           |       |
| Reduction in stock                                         |            |            |       |           |       |
| Water consumption                                          |            |            |       |           |       |
| Life                                                       |            |            |       |           |       |
| Industry                                                   |            |            |       |           |       |
| Agriculture                                                |            |            |       |           |       |
| Water supplementation in artificial ecological environment |            |            |       |           |       |

 Table 1-12 Physical Account for Water Resources (Unit: 10,000 Cubic Meters)

|                                                | Sı         | urface wat | Undergro |           |       |  |
|------------------------------------------------|------------|------------|----------|-----------|-------|--|
|                                                | Reservoirs | Rivers     | Lakes    | und water | Total |  |
| Outflows and outputs                           |            |            |          |           |       |  |
| Outflows to external regions                   |            |            |          |           |       |  |
| Outputs to external regions                    |            |            |          |           |       |  |
| Water flow to other water bodies in the region |            |            |          |           |       |  |
| Non-water consumption                          |            |            |          |           |       |  |
| Closing stock                                  |            |            |          |           |       |  |

Note: This table is quoted from *the compilation system of national natural resource asset balance sheet*.

#### 1.5.2 Asset Accounts for Ecosystems

The asset accounts for ecosystems mainly include ecosystem extent account and ecosystem condition account.

#### 1.5.2.1 Ecosystem Extent Account

The extent of ecosystems is generally evaluated by measuring land cover, its structure is consistent with that of land cover account. Based on the feedbacks of experts from the UN delegation, six main categories of land cover were further divided. The preliminary design of ecosystem extent account is as follows.

|            |           |           | A             | В     |                    |                    |                       |               |                                   |                             |                       | C         |       | D              |                    | J         | Ξ               | F                    |            |       |
|------------|-----------|-----------|---------------|-------|--------------------|--------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|-----------|-------|----------------|--------------------|-----------|-----------------|----------------------|------------|-------|
|            |           | Wet crons | Drvland crops | Dispo | Broad-leaved trees | Eucalyptus species | Arbor economic forest | Bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest | Grassland | Marsh | Inland beaches | Land surface water | Mangroves | Coastal beaches | Parks and green land | Other land | Total |
| extentt    | Opening   |           |               |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |            |       |
| to extent  | Additions |           |               |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |            |       |
| in sextent | Reduction |           |               |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |            |       |
| extent     | Closing   |           |               |       |                    |                    |                       |               |                                   |                             |                       |           |       |                |                    |           |                 |                      |            |       |

 Table 1-15 Ecosystem Extent Account (Unit: hectares)

Note: A is farmland ecosystem, B is forest ecosystem, C is grassland ecosystem, D is wetland ecosystem, E is marine ecosystem, and F is urban ecosystem.

#### 1.5.2.2 Ecosystem Condition Account

As defined in paragraph 20, Chapter 4, *Technical Recommendations in Support of the System of Environmental-Economic Accounting 2012 - Experimental Ecosystem Accounting (White Paper)*, The structure of the ecosystem condition account is focused on recording information at two points in time, i.e. it presents information on the condition of different ecosystem types at the opening and closing of the reference accounting period (e.g. one year). Ecosystem condition accounting is particularly useful when accounts are developed for multiple years in order to record trends/changes in ecosystem condition (and, as relevant, the spatial variability of these trends). It may be that information on ecosystem condition is available for specific years, or for specific periods within a year. Updates on some aspects of ecosystem condition can in principle be made at higher frequencies (e.g. monthly) and the increasing availability of processed remote sensing data facilitates such regular updates. At the same time, different policy purposes may require information at different temporal resolutions and annual or bi-annual updates may be sufficient to monitor long-term trends in some cases. An example of an ecosystem condition account in shown in Table 1-16 where the account is compiled in physical terms using a variety of indicators for selected characteristics.

|                                      |                   | Proxy ecosystem type |                     |                   |                    |                 |                  |  |
|--------------------------------------|-------------------|----------------------|---------------------|-------------------|--------------------|-----------------|------------------|--|
|                                      |                   | Forest ecosystem     | Grassland ecosystem | wetland ecosystem | Farmland ecosystem | Urban ecosystem | Marine ecosystem |  |
| Example indicators of condition      |                   | 1                    | 2                   | 3                 | 4                  | 5               | 6                |  |
| Vegetation (e.g. RBD)                | opening condition |                      |                     |                   |                    |                 |                  |  |
|                                      | closing condition |                      |                     |                   |                    |                 |                  |  |
| Water quality (e.g. grade, PH)       | opening condition |                      |                     |                   |                    |                 |                  |  |
|                                      | closing condition |                      |                     |                   |                    |                 |                  |  |
| Soil (e.g. erosion, PH, nutrients)   | opening condition |                      |                     |                   |                    |                 |                  |  |
|                                      | closing condition |                      |                     |                   |                    |                 |                  |  |
| Biodiversity (e.g. species richness) | opening condition |                      |                     |                   |                    |                 |                  |  |
| Diouversity (e.g. species riemiess)  | closing condition |                      |                     |                   |                    |                 |                  |  |
| Habitate (e.g. fragmentation)        | opening condition |                      |                     |                   |                    |                 |                  |  |
| naonaus (e.g. naginenaush)           | closing condition |                      |                     |                   |                    |                 |                  |  |
|                                      |                   |                      |                     |                   |                    |                 |                  |  |
| Overall index of condition           | opening condition |                      |                     |                   |                    |                 |                  |  |
|                                      | closing condition |                      |                     |                   |                    |                 |                  |  |

#### Table 1-16 Initial example of an ecosystem condition account

#### **1.5.3 Accounts for Ecosystem Services**

Ecosystem services can be divided into different types. The SEEA Experimental Ecosystem Accounting adopts three widely recognized ecosystem services categories: (a) provisioning services;

(b) regulating services; (c) cultural services. The definition of ecosystem services excludes a set of flows which are commonly referred to as supporting or intermediary services (in particular intraand inter-ecosystem flows that relate to ongoing ecosystem processes). While these flows are not considered ecosystem services, they are incorporated in the measurement of ecosystem assets. The Guidelines will valuate ecosystem services from physical and monetary accounts .

#### 1.5.3.1 Indicators System for the Valuation

By referring to the *Common International Classification Ecosystem Services (CICES)*, and combining the feedbacks of experts from the UN project delegation, the indicators system for the valuation of ecosystem services in Guangxi was revised, the classification of ecosystem services was adjusted, the services such as assessment of nutrient accumulation, oxygen release and maintaining the nitrogen/phosphorus/potassium/organic content in soil were excluded, so as to avoid repeated calculation. The improved indicators system can be divided into three levels, the first-level indicators include 3 items: provisioning services, regulating services and cultural services; the second-level indicators include 10 items, including provisioning food and raw materials, recreational services, carbon sequestration , regulating climate, soil conservation, and protection of biodiversity, etc.; and the third-level indicators include 25 items.

| First-level indicators                                         | Second-level<br>indicators | Third-level<br>indicators | Ecosystems involved                                 |
|----------------------------------------------------------------|----------------------------|---------------------------|-----------------------------------------------------|
|                                                                |                            | Agricultural products     | Farmland, urban                                     |
| Provisionin<br>g services<br>Provisionin<br>food ar<br>materia |                            | Forest products           | Forest                                              |
|                                                                | food and raw<br>materials  | Livestock<br>products     | Grassland                                           |
|                                                                |                            | Wetland products          | Wetland                                             |
|                                                                |                            | Marine products           | Marine                                              |
|                                                                | Carbon<br>sequestration    | Carbon<br>sequestration   | Forest, grassland, wetland, farmland, urban, marine |
| Regulating services                                            | Regulating climate         | Regulating<br>temperature | Urban                                               |
|                                                                | Purifying<br>atmosphere    | Absorbing sulfur dioxide  | Forest, grassland, farmland, urban                  |

| AT 11 4 4 M T 11 4     | C 4 C 41        |                          | a · · a ·            |
|------------------------|-----------------|--------------------------|----------------------|
| Table 1-17 Indicators  | System for the  | • Valuation of Ecosystem | Services in Ginanovi |
| I upic I I/ Indicators | by seem for the | a unuation of Deobystem  | Set vices in Guangai |

| First-level indicators | Second-level indicators               | Third-level<br>indicators                    | Ecosystems involved                       |
|------------------------|---------------------------------------|----------------------------------------------|-------------------------------------------|
|                        |                                       | Absorbing<br>fluoride                        | Forest, grassland, farmland, urban        |
|                        |                                       | Absorbing<br>nitrogen oxides                 | Forest, grassland, farmland, urban        |
|                        |                                       | Dust retention                               | Forest, grassland, farmland, urban        |
|                        | Inorganic<br>nitrogen<br>purification |                                              | Marine                                    |
|                        | Pollution                             | Active phosphate purification                | Marine                                    |
|                        | treatment                             | Chemical oxygen<br>demand (COD)<br>treatment | Marine                                    |
|                        |                                       | Petroleum<br>disposal                        | Marine                                    |
|                        | Water<br>conservation                 | Conserving<br>water resources                | Forest, grassland, urban                  |
|                        | Protection Farmand disaster prot      | Farmland protection                          | Forest                                    |
|                        | reduction                             | flood mitigation                             | Wetland                                   |
| Soil                   | Soil conservation                     | Soil retention                               | Forest, grassland, farmland, urban        |
|                        | Protection of biodiversity            | Biological conservation                      | Forest, grassland, wetland, urban, marine |
|                        |                                       | Forest tourism                               | Forest                                    |
| Cultural services      | Recreational services                 | Recreational services                        | Wetland                                   |
|                        |                                       | Agricultural tourism                         | Farmland                                  |

| First-level<br>indicators | Second-level<br>indicators | Third-level<br>indicators | Ecosystems involved |
|---------------------------|----------------------------|---------------------------|---------------------|
|                           |                            | Urban tourism             | Urban               |
|                           |                            | Marine tourism            | Marine              |

#### 1.5.3.2 Accounts for Ecosystem Services

The following table is used to record the estimated actual flows of six types of ecosystem services in Guangxi. The value asset account for ecosystem service flows is consistent with the physical account.

|                                | Annual expected ecosystem service flows |          |           |         |        |       |       |
|--------------------------------|-----------------------------------------|----------|-----------|---------|--------|-------|-------|
| Types of ecosystem<br>services | Forest                                  | Farmland | Grassland | Wetland | Marine | Urban | Total |
| Provisioning services          |                                         |          |           |         |        |       |       |
| Regulating services            |                                         |          |           |         |        |       |       |
| Cultural services              |                                         |          |           |         |        |       |       |

**Table 1-18 Physical Account for Ecosystem Service Flows** 

#### 1.6 Monetary methods

In natural resources and ecosystem accounting, the main purpose of valuation is to integrate the information of natural resources, ecosystem condition and ecosystem services with that of standard national accounts. In order to achieve this goal, the valuation concept used in natural resources and ecosystem accounting, namely exchange value concept, needs to be consistent with the valuation concept used in standard national accounts. According to the exchange value concept, *Technical Recommendations in Support of the System of Environmental-Economic Accounting 2012–Experimental Ecosystem Accounting* (White Paper) summarizes and evaluates existing commonly used Monetary methods for natural resources and ecosystem accounting (Table 1-19). As for Travel Cost Method, the cost of time is the most controversial aspect.

# Table 1-19 Characteristics of Commonly Used Monetary methods for Natural Resources and Ecosystem Accounting and Their Scope of Application

| Methods                                         | Adopting exchange value                      | Applicable for the following ecosystem services   |
|-------------------------------------------------|----------------------------------------------|---------------------------------------------------|
| Resource rent                                   | Yes (it has been applied in SNA)             | Provisioning services (and cultural services)     |
| Production function method                      | Yes                                          | Provisioning services (and regulating services)   |
| Payment for Ecosystem<br>Services (PES) schemes | Yes                                          | Regulating services, such as carbon sequestration |
| Hedonic pricing method                          | Yes (it has been applied in SNA)             | Cultural services, such as aesthetic pleasure     |
| Replacement cost method                         | If the actual conditions are suitable        | Regulating services                               |
| Damage costs avoided method                     | If the actual conditions are suitable        | Regulating services                               |
| Averting behavior method                        | Likely inappropriate                         |                                                   |
| Restoration cost method                         | No (it may be used to estimate degradation)  |                                                   |
| Travel cost method                              | Possibly appropriate                         | Leisure and recreation                            |
| Statement preference<br>method                  | Not direct value, but available demand curve | Cultural services                                 |
| Marginal values method from demand functions    | Yes                                          | Regulating services (and cultural services)       |

#### **1.6.1 Resource Rent Method**

There are three methods for estimating resource rent: residual value method, collection method and price acquisition method. Residual value method is the most commonly used method. Unit resource rent is the difference between unit labor and production asset cost and interest price. Referring to the feedbacks from the experts of the UN delegation: taking the provision of agricultural products as an example, if we assume that the value of crops is 100, the cost of seeds and fuels is 20, the cost of manpower is 10, the capital cost (depreciation and opportunity cost) is 15, then the resource rent is 100-20-10-15=55. In this case, the value of ecosystem services is 55, rather than 100. In order to assess this ecosystem service, we need the information on average agricultural costs (which are possibly differentiated by crop type), capital costs (depreciation) and wages.

#### **1.6.2 Production Function Method**

Production function method makes use of the quantitative relationship between input and output of production factors for measurement. It is suitable for valuating provisioning services.

#### 1.6.3 Replacement Cost Method

Replacement cost method, also known as cost method, estimates the value of ecosystem services based on the cost of mitigation actions after losing ecosystem services, such as the cost of building a water purification plant if the ecosystem water filtration service that supplies underground water to the aquifer used for drinking water is destructed. The value of regulating climates, value of water conservation, value of flood mitigation and other indicators are measured by replacement cost method.

#### 1.6.4 Opportunity Cost Method

When resources are scarce, adopting one scheme means that other schemes must be abandoned, the maximum possible benefits of the abandoned schemes constitute the opportunity cost of the scheme. Opportunity cost method is used to evaluate the biodiversity index.

#### 1.6.5 Cost Analysis Method

It evaluates the value of ecosystem services from the perspective of consumers. It takes the money that people spend to enjoy an ecosystem service as the economic value of the service. Cost analysis method is adopted to measure tourism value and other indicators.

#### **1.6.6 Payment for Ecosystem Services**

Payment for ecosystem services is a voluntary transaction between a producer who can guarantee the continuous supply of an ecosystem service and a consumer who is willing to pay for the service. By regulating market behaviors, it is aimed at solving the problem of insufficient supply of ecosystem services, encouraging environmental protection behaviors and promoting the internalization of environmental externalities. The concept of payment for ecosystem services includes three dimensions: the definition of ecosystem services, exchange value accounting and ecosystem service transaction. Payment for ecosystem services is applicable to the valuation of carbon sequestration and other regulatory services in this Guidelines.

#### 1.7 Source of Basic Data

The basic data for developing accounts are mainly based on existing departmental statistics and resource survey and measurement data, such as: (a) data about current land use classification from natural resources departments; (b) forestry departments' survey data about the changes of forest land and forest resources, and wetland resources survey data; (c) grassland resources survey data from agricultural departments; (d) marine resources survey data from marine departments; (e) sampling and calculation data from cultural and tourism departments; (f) special monitoring survey

data, such as meteorological monitoring data, biomass monitoring data, hydrological monitoring data, soil survey data, ecological condition monitoring data of public welfare forests, stony desertification monitoring data; (g) and related literature and location-observation data of adjacent provinces.

The value parameter data mainly comes from the social public data published by Guangxi and national authorities and websites.

#### **1.8 Normative References**

The references of this Guidelines include:

(1) System of Environmental-Economic Accounting 2012: Central Framework

(2) System of Environmental-Economic Accounting 2012: Experimental Ecosystem Accounting

(3) Technical Recommendations in Support of the System of Environmental-Economic Accounting 2012–Experimental Ecosystem Accounting (White Paper)

(4) *Technical Rules for Monitoring of Environmental Quality of Farmland Soil* (NY/T 395-2012)

(5) Specifications for Valuation of Forest Ecosystem Services in China (LY/T 1721-2008)

(6) Specification of Biodiversity Monitoring and Evaluation for Forest Ecosystem (LY/T 2241-2014)

(7) Technical Specification for Forest Vegetation Monitoring (GB/T 30363-2013)

(8) Observation Methodology for Long-term Forest Ecosystem Research (LY/T 1952-2011)

(9) *Standards for Ambient Air Quality Monitoring* (Trial) (National Environmental Protection Bureau Announcement [2007] No. 4 )

(10) Technical Specification for Soil Environmental Monitoring (HJ/T166-2004)

(11) Water Quality – Determination of Total Nitrogen – Alkaline Potassium Persulfate Digestion – UV Spectrophotometric Method (HJ636-2012)

(12) Water Quality – Determination of Phosphorus – Phosphomolybdenum Blue Spectrophotometric Method (temporary) (HJ593-2010)

(13) Water Quality— Determination of Potassium and Sodium—Flame Atomic Absorption Spectrophotometry(GB11904-89)

(14) The Specification for Marine Monitoring (GB 17378-2007)
(15) The Specification for Oceanographic Survey (GBT 12763.4-2007)

(16) Technical Directives for Valuation of Marine Ecological Capital (GB/T 28058-2011)

(17) Assessment on the Carbon Sequestration Capability of Mangroves Wetland Ecosystem and Technical Regulations (DB45/T 1230-2015)

(18) Current Land Use Classification (GB/T 21010-2017)

(19) Notice on the Adjustment of Levy Standards for Pollutant Discharge Fees and Other Related Issues (GJF [2015] No.67)

Note: For the references with a date, only the version with the date is applicable to this document. For the undated references, their latest version (including all revisions) is applicable to this document.

# **1.9 Further Introduction**

This guideline will be further improved according to the actual situation when the specific accounts compiled.

# **Chapter 2 Valuation of Forest Ecosystem Services**

# 2.1Valuation Scope

The valuation scope of forest ecosystem includes the forest land and garden plots specified by the *Current Land Use Classification* (GB/T2010-2017). Forest land refers to the land that grows arbors, bamboos, and coastal mangroves, including sparse wood land, immature forest land, and cutover land. A garden plot refers to the land that intensively grows perennial woody and herbaceous crops, from which people collect fruits, leaves, roots and juice, the coverage rate is more than 50% and the number of plants per mu is 70% more than the reasonable number of plants, it also includes the land used for seedling cultivation.

| Classification<br>code | Land use type         | Remark                                                                                                                                             |
|------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0201                   | Orchard               | It refers to the garden plot that grows fruit trees.                                                                                               |
| 0202                   | Tea plantation        | It refers to the garden plot for tea planting.                                                                                                     |
| 0203                   | Rubber plantation     | It refers to the garden plot that grows rubber plants.                                                                                             |
| 0204                   | Other garden plots    | It refers to the garden plots that grow mulberry, cocoa, coffee,<br>oil palm, pepper, medicinal herbs and other perennial crops.                   |
| 0301                   | Arbor forest<br>land  | It refers to the arbor forest land, with crown density $\geq 0.2$ , excluding forest bog.                                                          |
| 0302                   | Bamboo forest<br>land | It refers to the forest land that grows bamboo plants, with crown density≥0.2.                                                                     |
| 0307                   | Other forest<br>land  | Including sparse wood land (with crown density $\ge 0.1$ and $< 0.2$ ), immature forest land, cutover land, nursery gardens and other forest land. |
| 0305                   | Shrub land            | The forest land with shrub coverage≥40%, excluding shrub bog.                                                                                      |

Table 2-1 Corresponding Land Use Classification Scope of Forest Ecosystem

# 2.2 Valuation Indicators System

The valuation indicators system of forest ecosystem services includes three levels of indicators, including 3 first-level indicators, 8 second-level indicators and 11 third-level indicators.

 Table 2-2
 The Valuation Indicators System of Forest Ecosystem Services in Guangxi

| First-level<br>indicators | Second-level indicators                 | Third-level indicators | Content            |
|---------------------------|-----------------------------------------|------------------------|--------------------|
| Provisioning<br>services  | Provisioning food and raw materials     | Forest products        | Physical, Monetary |
| Regulating services       | Carbon sequestration and oxygen release | Carbon sequestration   | Physical, Monetary |

| First-level indicators | Second-level indicators           | Third-level<br>indicators     | Content            |
|------------------------|-----------------------------------|-------------------------------|--------------------|
|                        |                                   | Absorbing sulfur<br>dioxide   | Physical, Monetary |
|                        | Purifying atmosphere              | Absorbing fluoride            | Physical, Monetary |
|                        |                                   | Absorbing nitrogen<br>oxides  | Physical, Monetary |
|                        |                                   | Dust retention                | Physical, Monetary |
|                        | Soil conservation                 | Soil retention                | Physical, Monetary |
|                        | Water conservation                | Conserving water<br>resources | Physical, Monetary |
|                        | Protection and disaster reduction | Farmland protection           | Monetary           |
|                        | Protection of biodiversity        | Biodiversity                  | Monetary           |
| Cultural services      | Recreational services             | Forest tourism                | Physical, Monetary |

#### 2.3 Physical Methods

#### (1) Forest Products

The calculation formula is:

$$Q_{\text{forest products}} = \sum_{i=1}^{n} Q_{\text{product }i}$$

In the formula:  $Q_{\text{forest products}}$  is the total yield of forest products, unit: tons/year;  $Q_{\text{product i}}$  is the yield of type i forest, unit: tons/year; n is the total number of types of forest products and forest by-products. The timber and non-timber forest products can be zoned according to the actual situation when accounting.

#### (2) Carbon Sequestration

The calculation formula is:

$$Q_{\text{carbon sequestration}} = \sum_{i=1}^{n} S_i \times (\text{NEP}_i \times 1.63 \times 0.273 + Q_{\text{soil carbon}})$$

In the formula:  $Q_{carbon sequestration}$  is the total carbon sequestration quantity of forests, unit: tons/year; n is the number of forest types; NEP<sub>i</sub> is the net ecosystem productivity of type i forest per unit area, unit: tons/hectare·year; S<sub>i</sub> is the area of type i forest, unit: hectare;  $Q_{soil carbon i}$  is the carbon sequestration (pure carbon) of type i forest per unit area, unit: tons/hectare/year; 1.63 is the coefficient of carbon sequestration ; 0.273 is the carbon content in carbon dioxide (the cite source of 1.63 and 0.273 is *Specifications for assessment of forest ecosystem services in China*).

#### (3) Absorbing Sulfur Dioxide(SO<sub>2</sub>)

The calculation formula is:  $Q_{SO_2} = \sum_{i=1}^{n} Q_{SO_{2i}} \times S_i \times 10^{-3}$ 

In the formula:  $Q_{SO_2}$  is the total amount of SO<sub>2</sub> absorbed by forests, unit: tons/year; n is the number of forest types;  $Q_{SO_{2i}}$  is amount of SO<sub>2</sub> absorbed by type i forest per unit area, unit: kg/hectare·year; S<sub>i</sub> is the area of type i forest, unit: hectare; 10<sup>-3</sup> is the unit conversion coefficient.

#### (4) Absorbing Fluoride(HF)

The calculation formula is:  $Q_{HF} = \sum_{i=1}^{n} Q_{HFi} \times S_i \times 10^{-3}$ 

In the formula:  $Q_{HF}$  is the total amount of HF absorbed by forests, unit: tons/year; n is the number of forest types;  $Q_{HFi}$  is amount of HF absorbed by type i forest per unit area, unit: kg/hectare·year; S<sub>i</sub> is the area of type i forest, unit: hectare; 10<sup>-3</sup> is the unit conversion coefficient.

#### (5) Absorbing Nitrogen Oxides(NO<sub>X</sub>)

The calculation formula is:  $Q_{NO_x} = \sum_{i=1}^{n} Q_{NO_x i} \times S_i \times 10^{-3}$ 

In the formula:  $Q_{NO_X}$  is the total amount of NO<sub>X</sub> absorbed by forests, unit: tons/year; n is the number of forest types;  $Q_{NO_Xi}$  is amount of NO<sub>X</sub> absorbed by type i forest per unit area, unit: kg/hectare·year; S<sub>i</sub> is the area of type i forest, unit: hectare; 10<sup>-3</sup> is the unit conversion coefficient.

#### (6) Dust Retention

The calculation formula is:  $Q_{dust retention} = \sum_{i=1}^{n} Q_{dust i} \times S_i \times 10^{-3}$ 

In the formula:  $Q_{dust retention}$  is the dust retention amount of forests, unit: tons/year;  $Q_{dust i}$  is the amount of dust absorbed by type i forest per unit area, unit: kg/hectare year; n is the number of forest types;  $S_i$  is the area of type i forest, unit: hectare;  $10^{-3}$  is the unit conversion coefficient.

The PM2.5 absorbed and retained is measured separately. The total amount of PM2.5 deposited in an ecosystem can be estimated as a function of regional area, deposition velocity, time period and average ambient PM2.5 concentration. The formula is as follows:  $PM\downarrow=A\times Vd\times t\times C$ , in which  $PM\downarrow=$  amount of precipitated PM2.5 (kg), A= regional area (m<sup>2</sup>), Vd=deposition velocity as a function of the leaf area index of the vegetation (mm.s<sup>-1</sup>), t=time (s), C= ambient PM2.5 concentration (kg/m<sup>3</sup>). The the deposition velocity depends on the vegetation type.

#### (7) Soil retention

Soil conservation quantity, namely the amount of reduced silt accumulation, is measured by the difference between potential soil erosion amount and actual soil erosion amount. In which, soil erosion amount is evaluated by the general soil and water loss equation.

$$Q_{soil} = R \cdot K \cdot LS \cdot C \cdot P$$

$$Q_{\text{soil retention}} = \mathbf{R} \cdot \mathbf{K} \cdot \mathbf{LS} \cdot (1 - \mathbf{C} \cdot \mathbf{P})$$

In the formula:  $Q_{soil}$  is annual soil loss; *R* is rainfall erosion factor; *K* is soil erodibility factor; *LS* is slope length factor; *C* is vegetation cover factor; *P* is soil and water conservation measure factor.  $Q_{soil retention}$  is the total soil retention quantity of forest, unit: tons/year.

#### (8) Conserving Water Resources

The calculation formula is:

 $Q_{\text{water conservation}} = \sum_{i=1}^{n} S_i \times P_i \times (1 - E_i - R_i) \times 10$ 

In the formula:  $Q_{water \ conservation}$  is the total amount of water conserved by forest ecosystem, unit: tons/year;  $S_i$  is the area of forest with type i land use, unit: hectare;  $P_i$  is the precipitation of the forest with type i land use, unit: mm/year;  $E_i$  is the evapotranspiration of forest with type i land use, unit: %;  $R_i$  is the surface runoff rate of forest with type i land use, unit: %; 10 is the unit conversion coefficient.

### (9) Recreational services

The physical accounting method is using the statistical data of the number of tourists in the forest scenic spots obtained by the tourism department.

#### 2.4 Monetary methods

#### (1) Forest output

The calculation formula:

$$V_{\text{forest products}} = \sum_{i=1}^{n} Q_{\text{product i}} \times P_{\text{product i}} \times 10^{-4}$$

Where,

V<sub>forest products</sub> refers to forest output value, in 10,000 Yuan/year;

Q<sub>product i</sub>refers to the output of Type i forest products, in ton/year;

Pproduct irefers to the unit resource rent of Type i forest products or by-products, in Yuan/ton;

nrefers to the number of types of forest products and by-products, which can be acquired from *Guangxi Forestry Statistical Statement*;

10<sup>-4</sup> is unit conversion coefficient.

# (2) Carbon sequestration

The value of Carbon sequestration is calculated with payment for ecosystem services method, by multiplying the quantity of Carbon sequestration by each type of forest by carbon market trading price. The calculation formula is:

 $V_{\text{carbon sequestration}} = \sum_{i=1}^{n} Q_{\text{carbon sequestration i}} \times T_{\text{C}} \times 10^{-4}$ 

Where,

V<sub>carbon sequestration i</sub>refers to the value of Carbon sequestration of forest, in 10,000 Yuan/year;

T<sub>c</sub>refers to carbon market trading price, in Yuan/ton;

Q<sub>carbon sequestration i</sub> refers to the quantity of carbon fixed by Type i forest, in ton/year;

nrefers to the number of forest types;

 $10^{-4}$  is unit conversion coefficient.

And

 $Q_{carbon\,release\,i} = S_i \times (NEP_i \times 1.63 \times 0.273 + F_{soil\,carbon}$  )

Where,

NEP<sub>i</sub> is the net ecosystem productivity of type i forest per unit area, unit: tons/hectare·year, based on monitoring data of Department of Forestry of Guangxi Zhuang Autonomous Region, the same below;

S<sub>i</sub>refers to the area of Type i forest, in hectare, based on monitoring data of Department of Forestry of Guangxi Zhuang Autonomous Region, the same below;

F<sub>soil carbon i</sub>refers to the quantity of soil Carbon sequestration of Type i forest, in ton/year;

0.273 is the percentage of carbon in carbon dioxide.

#### (3) Value of sulfur dioxide absorption

The value of sulfur dioxide absorption is calculated with expense analysis method. The quantity of sulfur dioxide absorbed is calculated by multiplying the quantity of sulfur dioxide absorbed per forest stand area by such forest stand area, and then the value of sulfur dioxide absorption is calculated according to cost on treatment of sulfur dioxide. The calculation formula is:

$$V_{SO_2} = \sum_{i=1}^{n} Q_{SO_2i} \times C_{SO_2i} \times 10^{-4}$$

Where,

V<sub>SO2</sub> refers to the value of SO<sub>2</sub> absorption of forest, in 10,000 Yuan/year;

 $Q_{SO_2i}$  refers to the quantity of  $SO_2$  absorbed by Type i forest, in kg/year;

C<sub>SO<sub>2</sub>i</sub>refers to cost on treatment of per unit SO<sub>2</sub> in Type i forest, in Yuan/kg;

nrefers to the number of forest types;

 $10^{-4}$  is unit conversion coefficient.

And

$$Q_{SO_2i} = Q_{unit SO_2i} \times S_i$$

Where,

 $Q_{unit SO_2i}$  refers to the quantity of SO<sub>2</sub> absorbed per unit area of Type i forest, in kg/hectare· year, based on monitoring data of Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

Sirefers to the area of Type i forest, in hectare.

#### (4) Value of fluoride absorption

The value of fluoride absorption is calculated with expense analysis method. The quantity of fluoride absorbed is calculated by multiplying the quantity of fluoride absorbed per forest stand area by such forest stand area, and then the value of fluoride absorption is calculated according to cost on treatment of fluoride. The calculation formula is:

$$V_{HF} = \sum_{i=1}^{n} Q_{HFi} C_{HFi} \times 10^{-4}$$

Where,

V<sub>HF</sub>refers to the value of HF absorption of forest, in 10,000 Yuan/year;

Q<sub>HFi</sub>refers to the quantity of HF absorbed by Type i forest, in kg/year;

C<sub>HFi</sub>refers to cost on treatment of per unit HF in Type i forest, in Yuan/kg;

nrefers to the number of forest types;

 $10^{-4}$  is unit conversion coefficient.

And

$$Q_{HFi} = Q_{unit \, HFi} \times S_i$$

Where,

 $Q_{unit HFi}$  refers to the quantity of HF absorbed per unit area of Type i forest, in kg/hectare· year, based on monitoring data of Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

S<sub>i</sub>refers to the area of Type i forest, in hectare.

#### (5) Value of nitric oxide absorption

The value of nitric oxide absorption is calculated with expense analysis method. The quantity of nitric oxide absorbed is calculated by multiplying the quantity of nitric oxide absorbed per forest stand area by such forest stand area, and then the value of nitric oxide absorption is calculated according to the cost on treatment of nitric oxide. The calculation formula is:

$$V_{NO_X} = \sum_{i=1}^{n} Q_{NO_X i} \times C_{NO_X i} \times 10^{-1}$$

Where,

V<sub>NOx</sub> refers to the value of NO<sub>X</sub> absorption of forest, in 10,000 Yuan/year;

Q<sub>NOxi</sub>refers to the quantity of NO<sub>X</sub> absorbed by Type i forest, in kg/year;

C<sub>NOx</sub> refers to cost on treatment of per unit NO<sub>X</sub> in forest, in Yuan/kg;

nrefers to the number of forest types;

 $10^{-4}$  is unit conversion coefficient.

And

$$Q_{NO_X i} = Q_{unit NO_X i} \times S_i$$

Where,

 $Q_{\text{unit NO}_X}$  refers to the quantity of  $NO_X$  absorbed per unit area of Type i forest, in kg/hectare· year, based on monitoring data of Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

S<sub>i</sub>refers to the area of Type i forest, in hectare.

#### (6) Value of dust detaining

Forest can block, filter and adsorb dust, and can improve air quality, so dust detaining is one of important service functions of forest ecosystem. The value of dust detaining is calculated with expense analysis method. The quantity of dust adsorbed is calculated by multiplying the quantity of dust adsorbed per forest stand area by such forest stand area, and then the value of dust adsorption is calculated according to the cost on treatment of dust. The calculation formula is:

$$V_{\text{dust detaining}} = \sum_{i=1}^{n} Q_{\text{dust i}} \times C_{\text{dust i}} \times 10^{-4}$$

Where,

V<sub>dust detaining</sub> refers to the value of dust detaining of forest, in 10,000 Yuan/year;

Q<sub>dust i</sub>refers to the quantity of dust adsorbed by Type i forest, in kg/year;

C<sub>dust i</sub>refers to cost on treatment of per unit dust in Type i forest, in Yuan/kg;

nrefers to the number of forest types;

 $10^{-4}$  is unit conversion coefficient.

And

$$Q_{dust i} = Q_{unit dust i} \times S_i$$

Where,

 $Q_{unit dust i}$  refers to the quantity of dust adsorbed per unit area of Type i forest, in kg/hectare· year, based on monitoring data of Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

S<sub>i</sub>refers to the area of Type i forest, in hectare.

#### (7) Soil retention value

Sediment resulting from soil erosion is silted up in reservoirs, reducing the volume of water accumulated in reservoirs. Soil retention value is calculated with shadow project method, that is, soil retention value of forest is measured through the calculation of earthwork excavation (the shadow project) cost. The calculation formula is:

$$V_{soil retention} = \sum_{i=1}^{n} Q_{soil retention i} \times C_{earthwork} / \rho_i \times 10^{-4}$$

Where,

V<sub>soil retention</sub> refers to soil retention value of forest, in 10,000 Yuan/year;

Q<sub>soil retention i</sub>refers to the quantity of soil fixed by Type i forest, in ton/year;

 $\rho_i$ refers to soil bulk density of Type i forest, in ton/m<sup>3</sup>, source from Department of Forestry of Guangxi Zhuang Autonomous Region;

Cearthwork refers to cost on excavation and transportation of earthwork per unit volume, in Yuan/m<sup>3</sup>;

nrefers to the number of forest types.

And

$$Q_{\text{soil retention i}} = S_i(X_{2i} - X_{1i})$$

Where,

S<sub>i</sub>refers to the area of Type i forest, in hectare;

 $X_{1i}$  refers to erosion modulus of Type i forest land, in ton/hectare· year;

 $X_{2i}$  refers to erosion modulus of Type i non-forest land, in ton/hectare· year, sourced from Department of Forestry of Guangxi Zhuang Autonomous Region.

#### (8) Water conservation value

The water conservation value is calculated with shadow project method. The measurement of water conservation value of forest is converted into that of reservoir construction (the shadow project) cost. The calculation formula is:

$$V_{\text{water conservation}} = \sum_{i=1}^{n} Q_{\text{water regulation i}} \times C_{\text{reservior}} \times 10^{-4}$$

Where,

Vwater conservation refers to the water conservation value of forest, in 10,000 Yuan/year;

Q<sub>water regulation i</sub>refers to the quantity of water regulated by Type i forest, in m<sup>3</sup>/year;

Creservior refers to cost on reservoir capacity construction, in Yuan/m<sup>3</sup>;

nrefers to the number of forest types;

 $10^{-4}$  is unit conversion coefficient.

And

$$Q_{water regulation i} = 10 \times S_i (P_{precipitation i} - E_i - R_i)$$

Where,

S<sub>i</sub>refers to the area of Type i forest, in hectare;

P<sub>precipitation</sub> irefers to precipitation in Type i forest, in mm/year;

Eirefers to evapotranspiration in Type i forest, in mm/year;

R<sub>i</sub>refers to surface runoff in Type i forest, in mm/year;

10 is unit conversion coefficient.

#### (9) Value of protection and disaster reduction

#### **()**Farmland protection value

The farmland protection value is calculated with market price approach. The increase in the yield of crops is figured out through the ratio of increase in crop yield, crop yield and the ratio of the area of fields with protection forest to that of fields without protection forest, and then is multiplied by the price of crops at the very year. The calculation formula is:

$$V_{\text{farmland protection}} = \sum_{i=1}^{n} Q_{\text{crops } i} \times P_{\text{crops } i} \times 10^{-4}$$

Where,

V<sub>farmland protection</sub> refers to the farmland protection value, in 10,000 Yuan/year;

Q<sub>crops i</sub>refers to the increase in the yield of Type i crops, in kg/year;

Pcrops i refers to the market price of Type i crops at the very year, in Yuan/kg, sourced from Department of Agriculture of Guangxi Zhuang Autonomous Region;

nrefers to the number of crop types; according to Guangxi Statistical Yearbook, there are four types of crops, such as rice, corns, soybeans and potatoes; so n is equal to 4;

 $10^{-4}$  is unit conversion coefficient.

And

$$Q_{\text{crops } i} = I_{\text{crops } i} \times Q_{\text{crops } i} \times \frac{S_{\text{farmland with protection forest}}}{S_{\text{farmland}}}$$

Where,

I<sub>crops i</sub> refers to the ratio of increase in the yield of Type i crops, in%; according to Encyclopedia of Agriculture: Forestry, in normal years, farmland forest network and intercropping can increase wheat yield by 10%-30%, corn yield by 10%-20%, rice yield by 6% and cotton yield by 13% -18%. The ration of increase in yield of crops with the protection of forest vegetation is 10% in a unified manner.

 $Q_{crops \, i}$  refers to the output of Type i crops, in kg/year, based on data on output of four types such as rice, corns, soybeans and potatoes in the very year in Guangxi Statistical Yearbook;

Sfarmland with protection forest refers to the area of farmland with protection forest, in hectare, sourced from Department of Agriculture of Guangxi Zhuang Autonomous Region;

Sfarmland refers to the area of farmland, in hectare, sourced from Department of Land and Resources of Guangxi Zhuang Autonomous Region;

Forest coverage rate in Guangxi is greater than60%, and it is assumed that  $\frac{S_{farmland with protection forest}}{1} = 1$  in calculation. S<sub>farmland</sub>

#### **(2)**Value of windbreak and bank protection

The value of windbreak and bank protection is calculated with market price approach. The calculation formula is:

$$V_{\text{protection}} = V_{\text{mangrove}} \times S_{\text{mangrove}} \times 10^{-4}$$

Where,

V<sub>protection</sub> refers to the value of windbreak and bank protection of coastal protection forest, in 10,000

Yuan/year;

 $V_{mangrove}$  refers to the value of windbreak and bank protection per unit of mangrove, in Yuan/hectare· year;

S<sub>mangrove</sub> refers to the area of mangrove, in hectare, sourced from Oceanic Administration of Guangxi;

10<sup>-4</sup> is unit conversion coefficient.

#### (10) Maintaining biodiversity value

Maintaining biodiversity value of forest is assessed with a calculation method based on Shannon-Wiener index, which is a category of opportunity cost approach. The calculation formula is:

$$V_{biodiversity} = \sum_{i=1}^{n} S_i \times V_{Bi} \times 10^{-4}$$

Where,

Vbiodiversity refers to maintaining biodiversity value of forest, in 10,000 Yuan/year;

V<sub>Bi</sub>refers to opportunity cost on species loss per unit area of Type i forest, in Yuan/hectare· year, sourced from Department of Forestry of Guangxi Autonomous Region;

Sirefers to the area of Type i forest, in hectare;

nrefers to the number of forest types; as mangrove biodiversity value is calculated in marine ecosystem, mangrove is excluded for avoidance of repeated calculation;

 $10^{-4}$  is unit conversion coefficient.

# (11) Recreational services

Recreational services are estimated based on the sum of annual comprehensive tourism revenue and transport cost of A-class and above tourist attractions focusing on forest in Guangxi. The calculation formula is:

$$V_{\text{tourism}} = \sum_{i=1}^{n} (R_{\text{tourist attraction i}} + C_{\text{transport i}})$$

Where,

Vtourism refers to forest tourism value, in 10,000 Yuan/year;

R<sub>tourist attraction i</sub>refers to total operating revenue of A-class forest tourist attraction i, in 10,000 Yuan/year, based on statistics obtained by Guangxi Tourism Administration according to the tourist attraction management system of National Tourism Administration;

C<sub>transport i</sub> refers to the transport cost paid by visitors in the process of travelling in the A-class forest tourist attraction i, in 10,000 Yuan/year, based on statistics obtained by Guangxi Tourism Administration according to the domestic tourism sampling survey statistical system of National Tourism Administration;

nrefers to the number of A-class tourist attractions focusing on forest in Guangxi, based on statistics obtained by Guangxi Tourism Administration according to the tourist attraction management system of National Tourism Administration.

#### 2.5 Accounts for Forest Ecosystem Accounting

#### Table 2-3 Forest Ecosystem Extent Account (Unit: Hectare)

|                    | Chinese fir forest | Pine forest | Broad-leaved forest | Eucalyptus forest | Arbor economic forest | Bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest | Total |
|--------------------|--------------------|-------------|---------------------|-------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|-------|
| Opening stock      |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
| Additions to stock |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
| Reduction in stock |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
| Closing stock      |                    |             |                     |                   |                       |               |                                   |                             |                       |       |

# Table 2-4 Forest Ecosystem Condition Account

|                                                                     |         | Chinese fir forest | Pine forest | Broad-leaved forest | Eucalyptus forest | Arbor economic forest | Bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest |
|---------------------------------------------------------------------|---------|--------------------|-------------|---------------------|-------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|
| Net productivity of forest (t·hm <sup>-2</sup> ·a-1)                | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
|                                                                     | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Annual carbon sequestration quantity of                             | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
| soil $(t \cdot hm^{-2} \cdot a^{-1})$                               | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Anion concentration of forest(piece·a <sup>-1</sup> )               | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
|                                                                     | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Sulfur dioxide uptake per unit (kg·hm <sup>-2</sup> ·a <sup>-</sup> | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
| 1)                                                                  | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Fluoride uptake per unit (kg·hm <sup>-2</sup> ·a <sup>-1</sup> )    | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |

|                                                                             |         | Chinese fir forest | Pine forest | Broad-leaved forest | Eucalyptus forest | Arbor economic forest | Bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest |
|-----------------------------------------------------------------------------|---------|--------------------|-------------|---------------------|-------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|
|                                                                             | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Nitrogen oxides uptake per unit(kg·hm <sup>-</sup> $^{2}$ o <sup>-1</sup> ) | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
| ·a )                                                                        | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Annual dust retention quantity per                                          | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
| $unit(t \cdot nm^2 \cdot a^2)$                                              | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Average tree height (m)                                                     | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
|                                                                             | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Annual precipitation (mm)                                                   | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
| · · · · · · · · · · · · · · · · · · ·                                       | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Annual evapotranspiration rate                                              | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
|                                                                             | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Annual fast runoff coefficient                                              | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
|                                                                             | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Nitrogen content of timber (%)                                              | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
|                                                                             | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Phosphorus content of timber (%)                                            | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
|                                                                             | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Potassium content of timber (%)                                             | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
|                                                                             | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Forest land erosion modulus $(t,hm^{-2},a^{-1})$                            | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Torest fand crosson modulus (t min u )                                      | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Non-forest land erosion modulus (t hm                                       | Opening |                    |             |                     |                   |                       |               |                                   |                             |                       |
| <sup>2</sup> ·a <sup>-1</sup> )                                             | Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |

|                                           |                    | Chinese fir forest | Pine forest | Broad-leaved forest | Eucalyptus forest | Arbor economic forest | Bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest |
|-------------------------------------------|--------------------|--------------------|-------------|---------------------|-------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|
| Volume weight of soil(t.m <sup>-3</sup> ) | Opening<br>Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Nitrogen content of soil(%)               | Opening<br>Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Phosphorus content of soil(%)             | Opening<br>Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Potassium content of soil(%)              | Opening<br>Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Soil organic matter content (%)           | Opening<br>Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |
| Shannon-Wiener index                      | Opening<br>Closing |                    |             |                     |                   |                       |               |                                   |                             |                       |

# Table 2-5 Physical Account for Forest Ecosystem Services (Unit: Ton)

| Туре                     | of services     | Chinese fir forest | Pine forest | Broad-leaved forest | Eucalyptus forest | Arbor economic forest | Bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest | Total |
|--------------------------|-----------------|--------------------|-------------|---------------------|-------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|-------|
| Provisioning<br>services | Forest products |                    |             |                     |                   |                       |               |                                   |                             |                       |       |

| Туре                | of services                    | Chinese fir forest | Pine forest | Broad-leaved forest | Eucalyptus forest | Arbor economic forest | Bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest | Total |
|---------------------|--------------------------------|--------------------|-------------|---------------------|-------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|-------|
|                     | Carbon sequestration           |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
|                     | Absorbing sulfur dioxide       |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
|                     | Absorbing fluoride             |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
| Regulating services | Absorbing nitrogen<br>oxides   |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
|                     | Dust retention                 |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
|                     | Soil retention quantity        |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
|                     | Water conservation<br>quantity |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
| Cultural services   | Recreational services          |                    |             |                     |                   |                       |               |                                   |                             |                       |       |

# Table 2-6 Monetary Account for Forest Ecosystem Services (Unit: RMB 10,000)

| Туре                     | of services              | Chinese fir forest | Pine forest | Broad-leaved forest | Eucalyptus forest | Arbor economic forest | Bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest | Total |
|--------------------------|--------------------------|--------------------|-------------|---------------------|-------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|-------|
| Provisioning<br>services | Forest products          |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
| Deculating               | Carbon sequestration     |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
| services                 | Absorbing sulfur dioxide |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
|                          | Absorbing fluoride       |                    |             |                     |                   |                       |               |                                   |                             |                       |       |

| Туре              | of services                    | Chinese fir forest | Pine forest | Broad-leaved forest | Eucalyptus forest | Arbor economic forest | Bamboo forest | Shrub forest in artificial mounds | Shrub forest in stone hills | Shrub economic forest | Total |
|-------------------|--------------------------------|--------------------|-------------|---------------------|-------------------|-----------------------|---------------|-----------------------------------|-----------------------------|-----------------------|-------|
|                   | Absorbing nitrogen oxides      |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
|                   | Dust retention                 |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
|                   | Soil retention quantity        |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
|                   | Value of water<br>conservation |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
|                   | Value of farmland protection   |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
|                   | Value of biodiversity          |                    |             |                     |                   |                       |               |                                   |                             |                       |       |
| Cultural services | Recreational services          |                    |             |                     |                   |                       |               |                                   |                             |                       |       |

# **Chapter 3 Valuation of Grassland Ecosystem Services**

# 3.1 Valuation Scope

The valuation scope of grassland ecosystem includes the natural pastures, artificial pastures and other grassland specified by the *Current Land Use Classification* (GB/T2010-2017). Natural pastures refer to the grassland which are covered by natural herbs and mainly used for grazing or mowing, including grassland which implements grazing forbidden measures; swamp meadow mainly refers to marsh-type lowland meadow and alpine meadow, which are dominated by natural herbs. Artificial pastures include artificial grassland; other grassland refers to the grassland with crown density <0.1, and its surface layer is soil and not used for grazing.

| Classification<br>code | Land use type      | Remark                                        |
|------------------------|--------------------|-----------------------------------------------|
| 0401                   | Natural pasture    | Grassland with vegetation cover but no waters |
| 0402                   | Swamp meadow       | Grassland with waters and vegetation cover    |
| 0403                   | Artificial pasture | Grassland with vegetation cover but no waters |
| 0404                   | Other grassland    | Grassland with vegetation cover but no waters |

 Table 3-1 Corresponding Land Use Classification Scope of Grassland Ecosystem

# **3.2 Valuation Indicators System**

The valuation indicators system of grassland ecosystem services includes 3 first-level indicators, 5 second-level indicators and 9 third-level indicators.

|               |           |            | ~ ~       |            |             | ~           | -         |    |
|---------------|-----------|------------|-----------|------------|-------------|-------------|-----------|----|
| Table 3-2 The | Valuation | Indiantora | Suctom of | Croceland  | Loogystom   | Somuland in | o Cuona   | vi |
| Table 3-2 The | valuation | Indicators | System of | Grassiallu | LCUSVSIEIII | Services II | I Gually. | λГ |
|               |           |            |           |            |             |             |           |    |

| First-level<br>indicators | Second-level indicators   | Third-level<br>indicators   | Content            |  |
|---------------------------|---------------------------|-----------------------------|--------------------|--|
| Provisioning              | Provisioning food and raw | Hay                         | Physical, Monetary |  |
| services                  | materials                 | Livestock products          | Physical, Monetary |  |
|                           | Carbon sequestration      | Carbon sequestration        | Physical, Monetary |  |
| Regulating services       | Purifying atmosphere      | Absorbing sulfur<br>dioxide | Physical, Monetary |  |
|                           |                           | Absorbing fluoride          | Physical, Monetary |  |

|                    | Absorbing nitrogen oxides     | Physical, Monetary |
|--------------------|-------------------------------|--------------------|
|                    | Dust retention                | Physical, Monetary |
| Soil conservation  | Soil retention                | Physical, Monetary |
| Water conservation | Conserving water<br>resources | Physical, Monetary |

# **3.3 Physical methods**

# (1) Hay

The calculation formula is:

$$Q_{hay} = \sum_{i=1}^{n} Q_{hayi} \times S_i$$

In the formula:

Q<sub>hay</sub> is the total yield of hay, unit: tons/year;

 $Q_{hay i}$  is the amount of hay produced by type i grassland per unit area, unit: tons/hectare·year;

 $S_i\,$  is the area of type i grassland, unit: hectare.

# (2) Livestock Products

The calculation formula is:

$$Q_{\text{livestocks}} = \sum_{i=1}^{n} Q_{\text{livestock }i}$$

In the formula:

Q<sub>livestocks</sub> is the total amount of livestock products, unit: sheep unit/year;

Q<sub>livestock i</sub> is the amount of type i livestock product, unit: sheep unit/year;

n is the number of livestock product types.

# (3) Carbon Sequestration

The calculation formula is:

$$Q_{carbon\,sequestration} = \sum_{i=1}^{n} S_i \times NEP_i \times 1.63 \times 0.273$$

In the formula:

Q<sub>carbon sequestration</sub> is the carbon sequestration quantity of grassland, unit: tons/year;

n is the number of grassland types;

S<sub>i</sub> is the area of type i grassland, unit: hectare;

NEP<sub>i</sub> is the net ecosystem productivity of type i forest per unit area, unit: tons/hectare year;

1.63 is the coefficient of carbon sequestration; 0.273 is the carbon content in carbon dioxide. (the cite source of 1.63 and 0.273 is *Specifications for assessment of forest ecosystem services in China*).

#### (4) Absorbing Sulfur Dioxide

The calculation formula is:

$$Q_{SO_2} = \sum_{i=1}^n Q_{SO_2i} \times S_i \times 10^{-3}$$

In the formula:

 $Q_{SO_2}\;$  is the total amount of  $SO_2$  absorbed by grassland, unit: tons/year;

n is the number of grassland types;

 $Q_{SO_2i}$  is the amount of SO<sub>2</sub> absorbed by type i grassland per unit area, unit: kg/hectare·year;

S<sub>i</sub> is the area of type i grassland, unit: hectare;

 $10^{-3}$  is the unit conversion coefficient.

### (5) Absorbing Fluoride(HF)

The calculation formula is:

$$Q_{\rm HF} = \sum_{i=1}^{n} Q_{\rm HFi} \times S_i \times 10^{-3}$$

In the formula:

Q<sub>HF</sub> is the total amount of HF absorbed by grassland, unit: tons/year;

n is the number of grassland types;

 $Q_{\mathrm{HFi}}$  is the amount of HF absorbed by type i grassland per unit area, unit: kg/hectare·year ;

S<sub>i</sub> is the area of type i grassland, unit: hectare;

### $10^{-3}$ is the unit conversion coefficient.

# (6) Absorbing Nitrogen Oxides(NO<sub>X</sub>)

The calculation formula is:

$$Q_{NO_X} = \sum_{i=1}^{n} Q_{NO_{Xi}} \times S_i \times 10^{-3}$$

In the formula:

 $Q_{NO_X}$  is the total amount of NO<sub>X</sub> absorbed by grassland, unit: tons/year;

n is the number of grassland types;

 $Q_{NO_{Xi}}\,$  is the amount of  $\,NO_X\,\,$  absorbed by type i grassland per unit area, unit: kg/hectare year;

S<sub>i</sub> is the area of type i grassland, unit: hectare;

 $10^{-3}$  is the unit conversion coefficient.

#### (7) Dust Retention

The calculation formula is as follows:

$$Q_{\text{dust retention}} = \sum_{i=1}^{n} Q_{\text{dust i}} \times S_{i} \times 10^{-3}$$

In the formula:

Q<sub>dust retention</sub> is the total amount of dust absorbed by grassland, unit: tons/year;

n is the number of grassland types;

 $Q_{dust\,i}\,$  is the amount of dust absorbed by type i grassland per unit area, unit: kg/hectare·year ;

S<sub>i</sub> is the area of type i grassland, unit: hectare;

 $10^{-3}$  is the unit conversion coefficient.

The PM2.5 absorbed and retained is measured separately. The total amount of PM2.5 deposited in an ecosystem can be estimated as a function of regional area, deposition velocity, time period and average ambient PM2.5 concentration. The formula is as follows:  $PM\downarrow=A\times Vd\times t\times C$ , in which  $PM\downarrow=$  amount of precipitated PM2.5 (kg), A= regional area (m<sup>2</sup>), Vd=deposition velocity as a function of the leaf area index of the vegetation (mm.s<sup>-1</sup>), t=time (s), C= ambient PM2.5 concentration (kg/m<sup>3</sup>). The deposition velocity depends on the vegetation type.

#### (8) Soil retention

Soil conservation quantity, namely the amount of reduced silt accumulation, is measured by the difference between potential soil erosion amount and actual soil erosion amount. In which, soil erosion amount is evaluated by the general soil and water loss equation.

$$Q_{soil} = R \cdot K \cdot LS \cdot C \cdot P$$

$$Q_{\text{soil retention}} = \mathbf{R} \cdot \mathbf{K} \cdot \mathbf{LS} \cdot (1 - \mathbf{C} \cdot \mathbf{P})$$

In the formula:  $Q_{soil}$  is annual soil loss; *R* is rainfall erosion factor; *K* is soil erodibility factor; *LS* is slope length factor; *C* is vegetation cover factor; *P* is soil and water conservation measure factor.  $Q_{soil retention}$  is the total soil retention quantity of grassland.

# (9) Conserving Water Resources

The calculation formula is:

$$Q_{\text{water conservation}} = \sum_{i=1}^{n} 10 \times S_i \times P_{\text{precipitation } i} \times (1 - E_i - R_i)$$

In the formula:

Qwater conservation is the total amount of water conserved by grassland, unit: m<sup>3</sup>/year;

n is the number of grassland types;

S<sub>i</sub> is the area of type i grassland, unit: hectare;

P<sub>precipitationi</sub> is the precipitation of type i grassland, unit: mm/year;

 $E_i$  is the evapotranspiration rate of type i grassland, unit: %;

 $R_i$  is the surface runoff rate of type i grassland, unit: %;

10 is the unit conversion coefficient.

#### 3.4 Monetary methods

#### (1) Hey value

$$V_{\text{hay}} = \sum_{i=1}^{n} Q_{\text{hay}\,i} \times P_{\text{hay}\,i} \times 10^{-4}$$

Where,

Vhavrefers to the value of hay, in 10,000 Yuan/ton;

Q<sub>hay i</sub>refers to hey yield per unit area of Type i grassland, in ton/hectare, sourced from Department of Aquaculture, Animal Husbandry and Veterinary Services of Guangxi Autonomous Region;

Phay irefers to the unit resource rent of Type i hay, in Yuan/ton;

 $10^{-4}$  is unit conversion coefficient, the same as below.

#### (2) Value of animal husbandry products

 $V_{animal husbandry products} = \sum_{i=1}^{n} Q_{animal husbandry products i} \times P_{animal husbandry products i} \times 10^{-4}$ 

Where,

V<sub>animal husbandry products</sub> refers to the value of animal husbandry products, in 10,000 Yuan/year, based on statistics of Department of Aquaculture, Animal Husbandry and Veterinary Services of Guangxi Zhuang Autonomous Region;

Q<sub>animal husbandry products i</sub> refers to the quantity of Type i animal husbandry products, in sheep unit/year;

n refers to the number of types of animal husbandry products; according to relevant statistics in *China Animal Husbandry and Veterinary Medicine Yearbook*, animal husbandry products refer only to products of herbivores, mainly cattle, sheep and horses;

P<sub>animal husbandry products i</sub> refers to the market price of Type i animal husbandry products, in Yuan/sheep unit;

# (3) Value of Carbon sequestration

The value of carbon sequestration is calculated with payment for ecosystem services method, by multiplying the quantity of carbon sequestration by each type of forest by carbon market trading price. The calculation formula is:

$$\begin{split} Q_{Carbon\ sequestration\ i} &= NEP_{grassland\ i} \times 1.63 \times 0.273 \\ V_{Carbon\ sequestration\ } &= \sum_{i=1}^{n} S_{grassland\ i} \times T_{c} \times Q_{Carbon\ sequestration\ i} \times 10^{-4} \end{split}$$

Where,

 $Q_{Carbon sequestration i}$  refers to the quantity of carbon sequestration per unit area of Type i grassland, in ton/hectare· year, sourced from Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

V<sub>Carbon sequestration</sub> refers to the value of carbon sequestration of grassland, in 10,000 Yuan/year;

NEP<sub>grassland i</sub> refers to annual net ecosystem productivity per unit area of grassland, in ton/hectare year, the same below;

 $T_{\rm c}$  refers to carbon market trading price, in Yuan/ton;0.273 is carbon content in carbon dioxide; (the cite source of 1.63 and 0.273 is Specifications for assessment of forest ecosystem services in China) .

S<sub>grassland i</sub>refers to the area of Type i grassland, in hectare, sourced from Department of Land and Resources of Guangxi, the same below.

#### (4) Value of sulfur dioxide absorption

$$V_{\text{so2 grassland}} = \sum_{i=1}^{n} Q_{\text{so2 grassland i}} \times C_{\text{so2}} \times 10^{-4}$$
$$Q_{\text{so2 grassland i}} = Q_{\text{so2i}} \times S_{\text{grassland i}}$$

Where,

Vso2 grassland refers to the value of SO2 reduction of grassland, in 10,000 Yuan/year;

Q<sub>so2i</sub>refers to the quantity of SO<sub>2</sub> absorbed per unit area of Type i grassland, in kg, sourced from

Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

Q<sub>so2 grassland i</sub>refers to the total quantity of SO<sub>2</sub> absorbed by Type i grassland, in kg;

C<sub>so2</sub>refers to cost on treatment per unit SO<sub>2</sub>, in Yuan/kg.

#### (5) Value of fluoride (HF) absorption

 $V_{\text{HF grassland}} = \sum_{i=1}^{n} Q_{\text{HF grassland i}} \times C_{\text{HF}}$ 

 $Q_{HF \, grassland \, i} = Q_{HFi} \times S_{grassland \, i}$ 

Where,

V<sub>HF grassland</sub> refers to the value of HF reduction of grassland, in 10,000 Yuan/year;

Q<sub>HFi</sub>refers to the quantity of HF absorbed per unit area of Type i grassland, in ton/hectare, sourced from Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

Q<sub>HF grassland i</sub>refers to the total quantity of HF absorbed by Type i grassland, in ton;

C<sub>HF</sub>refers to cost on treatment per unit HF, in 10,000 Yuan/ton.

# (6) Value of nitric oxide (NOx) absorption

$$V_{\text{Nox grassland}} = \sum_{i=1}^{n} Q_{\text{Nox grassland i}} \times C_{\text{Nox}} \times 10^{-4}$$

$$Q_{nox grassland i} = Q_{noxi} \times S_{grassland i}$$

Where,

V<sub>Nox grassland</sub> refers to the value of NOx reduction of grassland, in 10,000 Yuan/year;

Q<sub>Noxi</sub>refers to the quantity of NOx absorbed per unit area of Type i grassland, in kg/hectare, sourced from Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

Q<sub>Nox grassland i</sub>refers to the total quantity of NOx absorbed by Type i grassland, in kg;

C<sub>Nox</sub>refers to cost on treatment per unit NOx, in kg/Yuan.

#### (7) Value of dust detaining

$$V_{\text{grassland dust}} = \sum_{i=1}^{n} Q_{\text{grassland dust i}} \times C_{\text{dust}} \times 10^{-4}$$

$$Q_{\text{grassland dust i}} = Q_{\text{dust i}} \times S_{\text{grassland i}}$$

Where,

Vgrassland dust refers to the value of dust reduction of grassland, in 10,000 Yuan/year;

Q<sub>dust i</sub>refers to the quantity of dust absorbed per unit of Type i grassland, in kg/hectare, sourced from Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

Qgrassland dust irefers to the total quantity of dust absorbed by Type i grassland, in kg;

C<sub>dust</sub>refers to cost on treatment per unit dust, in Yuan/kg.

#### (8) Soil retention value

$$V_{\text{soil}} = \sum_{i=1}^{n} Q_{\text{soil}\,i} \times P_{\text{earthwork}} / \rho_{\text{soil}\,i} \times 10^{-4}$$
$$Q_{\text{soil}\,i} = R \cdot K \cdot LS \cdot (1 - C \cdot P)$$

Where,

V<sub>soil</sub>refers to the value of soil conservation of grassland, in 10,000 Yuan/year;

Q<sub>soil i</sub>refers to the quantity of soil conserved by Type i grassland, in ton/year;

Pearthwork refers to cost on excavation and transportation per unit volume of earthwork, in Yuan/m<sup>3</sup>;

 $\rho_{\text{soil i}}$  refers to soil bulk density of Type i grassland, in ton/m<sup>3</sup>;

R is rainfall erosion factor; K is soil erodibility factor; LS is slope length factor; C is vegetation cover factor; P is soil and water conservation measure factor.

#### (9) Water conservation value

$$\begin{split} V_{water\ conservation} &= \sum_{i=1}^{n} Q_{water\ regulation\ i} \times P_{reservior} \\ Q_{water\ regulation\ i} &= S_{grassland\ i} \times R_{grassland\ i} \times 10^{-3} \times (\theta_{1i} - \theta_{2i}) \end{split}$$

Where,

Qwater regulation irefers to the quantity of water regulated by Type i grassland, in m3/year;

Vwater conservation refers to the value of water regulation of grassland, in 10,000 Yuan/year;

R<sub>grassland</sub>refers to average precipitation on Type i grassland, in mm, sourced from Meteorological Service of Guangxi;

Preservoir refers to the cost on construction per unit reservoir capacity, in 10,000 Yuan/m<sup>3</sup>;

 $\theta_{1i}$  refers to bare land rainfall runoff rate under the condition of runoff producing rainfall;

 $\theta_{2i}$  refers to grassland rainfall runoff rate under the condition of runoff producing rainfall.

 $10^{-3}$  is conversion coefficient.

# 3.5 Accounts for Grassland Ecosystem

#### Table 3-3 Grassland Ecosystem Extent Account (Unit: Hectare)

|                    | Natural<br>pasture | Artificial<br>pasture | Swamp<br>meadow | Other<br>grassland | Total |
|--------------------|--------------------|-----------------------|-----------------|--------------------|-------|
| Opening stock      |                    |                       |                 |                    |       |
| Additions to stock |                    |                       |                 |                    |       |
| Reduction in stock |                    |                       |                 |                    |       |
| Closing stock      |                    |                       |                 |                    |       |

#### **Table 3-4 Grassland Ecosystem Condition Account**

|                                         |         | Natural<br>pasture | Artificial<br>pasture | Swamp<br>meadow | Other<br>grassland |
|-----------------------------------------|---------|--------------------|-----------------------|-----------------|--------------------|
| Net productivity per unit               | Opening |                    |                       |                 |                    |
| $(t \cdot hm^{-2} \cdot a^{-1})$        | Closing |                    |                       |                 |                    |
| Sulfur dioxide uptake per               | Opening |                    |                       |                 |                    |
| (kg⋅hm <sup>-2</sup> ⋅a <sup>-1</sup> ) | Closing |                    |                       |                 |                    |
| Fluoride uptake per unit                | Opening |                    |                       |                 |                    |
| $(kg \cdot hm^{-2} \cdot a^{-1})$       | Closing |                    |                       |                 |                    |
| Nitrogen oxides uptake per<br>unit      | Opening |                    |                       |                 |                    |
| (kg·hm <sup>-2</sup> ·a <sup>-1</sup> ) | Closing |                    |                       |                 |                    |
| Annual dust retention                   | Opening |                    |                       |                 |                    |
| (kg⋅hm <sup>-2</sup> ⋅a <sup>-1</sup> ) | Closing |                    |                       |                 |                    |
| Annual precipitation(mm)                | Opening |                    |                       |                 |                    |
|                                         | Closing |                    |                       |                 |                    |
| Annual evapotranspiration               | Opening |                    |                       |                 |                    |
| coefficient                             | Closing |                    |                       |                 |                    |
| Grassland runoff                        | Opening |                    |                       |                 |                    |
| coefficient                             | Closing |                    |                       |                 |                    |
| Nitrogen content in plants              | Opening |                    |                       |                 |                    |
|                                         | Closing |                    |                       |                 |                    |
| Phosphorus content in                   | Opening |                    |                       |                 |                    |
|                                         | Closing |                    |                       |                 |                    |

|                                           |         | Natural<br>pasture | Artificial pasture | Swamp<br>meadow | Other<br>grassland |
|-------------------------------------------|---------|--------------------|--------------------|-----------------|--------------------|
|                                           |         |                    |                    |                 |                    |
| Potassium content in plants               | Opening |                    |                    |                 |                    |
| (%)                                       | Closing |                    |                    |                 |                    |
| Grassland soil erosion<br>modulus         | Opening |                    |                    |                 |                    |
| $(t \cdot hm^{-2} \cdot a^{-1})$          | Closing |                    |                    |                 |                    |
| Erosion modulus of<br>uncovered bare land | Opening |                    |                    |                 |                    |
| $(t \cdot hm^{-2} \cdot a^{-1})$          | Closing |                    |                    |                 |                    |
| Volume weight of soil                     | Opening |                    |                    |                 |                    |
| (t.m <sup>-3</sup> )                      | Closing |                    |                    |                 |                    |
| Nitrogen content of soil(%)               | Opening |                    |                    |                 |                    |
|                                           | Closing |                    |                    |                 |                    |
| Phosphorus content of                     | Opening |                    |                    |                 |                    |
| soil(%)                                   | Closing |                    |                    |                 |                    |
| Potassium content of                      | Opening |                    |                    |                 |                    |
| soil(%)                                   | Closing |                    |                    |                 |                    |
| Soil organic matter                       | Opening |                    |                    |                 |                    |
| content(%)                                | Closing |                    |                    |                 |                    |
| Comprehensive condition                   | Opening |                    |                    |                 |                    |
| index                                     | Closing |                    |                    |                 |                    |

| Tyj          | pe of services                                  | Natural<br>pasture | Artificial<br>pasture | Swamp<br>meadow | Other<br>grassland | Total |
|--------------|-------------------------------------------------|--------------------|-----------------------|-----------------|--------------------|-------|
| Provisioning | Hay products (ton)                              |                    |                       |                 |                    |       |
| services     | Livestock products<br>(sheep unit)              |                    |                       |                 |                    |       |
|              | Carbon sequestration<br>(ton)                   |                    |                       |                 |                    |       |
|              | Absorbing sulfur<br>dioxide (ton)               |                    |                       |                 |                    |       |
| Regulating   | Absorbing fluoride<br>(ton)                     |                    |                       |                 |                    |       |
| services     | Absorbing nitrogen<br>oxides (ton)              |                    |                       |                 |                    |       |
|              | Dust retention (ton)                            |                    |                       |                 |                    |       |
|              | Soil retention (ton)                            |                    |                       |                 |                    |       |
|              | Conserving water<br>resources (m <sup>3</sup> ) |                    |                       |                 |                    |       |

# Table 3-5 Physical Account for Grassland Ecosystem Services

# Table 3-6 Monetary Account for Grassland Ecosystem Services (Unit: RMB 10,000)

| Type of services |                             | Natural<br>pasture | Artificial<br>pasture | Swamp<br>meadow | Other<br>grassland | Total |
|------------------|-----------------------------|--------------------|-----------------------|-----------------|--------------------|-------|
| Provisioning     | Hay                         |                    |                       |                 |                    |       |
| services         | Livestock products          |                    |                       |                 |                    |       |
| Regulating       | Carbon sequestration        |                    |                       |                 |                    |       |
| services         | Absorbing sulfur<br>dioxide |                    |                       |                 |                    |       |

| Type of | f services                  | Natural<br>pasture | Artificial<br>pasture | Swamp<br>meadow | Other<br>grassland | Total |
|---------|-----------------------------|--------------------|-----------------------|-----------------|--------------------|-------|
| A       | bsorbing fluoride           |                    |                       |                 |                    |       |
| Al      | bsorbing nitrogen<br>oxides |                    |                       |                 |                    |       |
|         | Dust retention              |                    |                       |                 |                    |       |
|         | Soil retention              |                    |                       |                 |                    |       |
| C       | Conserving water resources  |                    |                       |                 |                    |       |

# **Chapter 4 Valuation of Wetland Ecosystem Services**

# 4.1 Valuation Scope

The valuation scope of wetland ecosystem services includes eight categories specified by the *Current Land Use Classification*(GB/T2010-2017), including swampland, inland beaches, forest bog, shrub bog, lake water surface, reservoir water surface, river water surface, pond water surface.

| Classification<br>code | Land use type           | Remark                                     |
|------------------------|-------------------------|--------------------------------------------|
| 0304                   | Forest bog              | Wetland with water and vegetation cover    |
| 0305                   | Shrub bog               | Wetland with water and vegetation cover    |
| 1101                   | River water surface     | Wetland with water but no vegetation cover |
| 1102                   | Lake water surface      | Wetland with water but no vegetation cover |
| 1103                   | Reservoir water surface | Wetland with water but no vegetation cover |
| 1104                   | Pond water surface      | Wetland with water but no vegetation cover |
| 1106                   | Inland beaches          | Wetland with water and vegetation cover    |
| 1108                   | Swampland               | Wetland with water and vegetation cover    |

 Table 4-1 Corresponding Land Use Classification Scope of Wetland Ecosystem

# 4.2 Valuation Indicators System

The valuation indicators system of wetland ecosystem services consists of three levels of indicators, including 3 first-level indicators, 6second-level indicators and 6 third-level indicators.

| First-level<br>indicators | Second-level indicators             | Third-level<br>indicators | Content            |
|---------------------------|-------------------------------------|---------------------------|--------------------|
| Provisioning<br>services  | Provisioning food and raw materials | Wetland products          | Physical, Monetary |
|                           | Carbon sequestration                | Carbon<br>sequestration   | Physical, Monetary |
| Regulating services       | Water conservation                  | Water purification        | Physical, Monetary |
| 0 0                       | Protection and disaster reduction   | flood mitigation          | Physical, Monetary |
|                           | Protection of biodiversity          | Biodiversity              | Monetary           |
| Cultural services         | Recreational services               | Recreational services     | Physical, Monetary |

Table 4-2 The Valuation Indicators System of Wetland Ecosystem Services in Guangxi

#### 4.3 Physical methods

# (1) Wetland Products

The calculation formula is:

$$Q_{\text{wetland products}} = \sum_{i=1}^{n} Q_{\text{product }i}$$

In the formula:

Q<sub>wetland products</sub> is the total number of wetland products, unit: m<sup>3</sup>/year;

Q<sub>product i</sub> is the amount of type i wetland product, unit: m<sup>3</sup>/year;

n is the number of wetland product types.

## (2) Carbon Sequestration

The calculation formula is:

$$Q_{carbon sequestration} = \sum_{i=1}^{n} Q_{Ci} \times S_{i}$$

In the formula:

Q<sub>carbon sequestration</sub> is the total carbon sequestration quantity of wetland ecosystem, unit: tons/year;

 $Q_{Ci}$  is the carbon sequestration quantity of type i wetland sub-ecosystem per unit area, unit: tons/hectare year;

S<sub>i</sub> is the water surface area of type i wetland sub-ecosystem, unit: hectare;

n is the number of wetland sub-ecosystems.

# (3) Water Purification

Water purification physical quantity is the chemical oxygen demand (COD) discharged to wetland ecosystem each year, unit: tons/year.

#### (4) flood mitigation

Flood mitigation refers to the volume of wetlands (e.g., lakes, reservoirs, swamps) that can mitigate flooding. Wetlands can regulate stream flows and mitigate flooding by storing water temporarily. Available storage capacity, flood control storage capacity, and surface stagnation of water were used as indicators of flood mitigation for lakes, reservoirs, and swamps, respectively. The flood mitigation model is based on a model published on the Science journal by Ouyang zhiyun, a researcher from the Chinese academy of sciences.

For lakes:

 $Ln(Q_{flood})=0.927 Ln(A)+4.904$ 

where  $Q_{flood}$  is the available storage capacity (10<sup>4</sup> m<sup>3</sup>), A is the lake area (km<sup>2</sup>).

For reservoirs:

#### $Q_{flood} = 0.35 \times Qt$

where  $Q_{flood}$  is the flood control storage capacity (10<sup>4</sup> m<sup>3</sup>), Qt is the total storage capacity (10<sup>4</sup> m<sup>3</sup>).

For swamps:

 $Q_{flood} = A \times D$ 

where Cr is the surface stagnation of water (10<sup>4</sup> m<sup>3</sup>), A is the swamp's area (km<sup>2</sup>), D is the average maximum depth of stagnation (cm).

#### (5) Recreational services

The physical accounting method is using the statistical data of the number of tourists in the wetland scenic spots obtained by the tourism department.

#### 4.4 Monetary methods

#### (1) Value of Wetland products

It is calculated with market value approach. Outputs of different types of freshwater products are considered as measuring indexes to calculate the value in combination with the unit market price in the very year. The calculation method is:

$$V_{\text{products}} = \sum_{i=1}^{n} (Q_{\text{products i}} \times P_{\text{products i}}) \times 10^{-4}$$

Where,

V<sub>products</sub> refers to the value of freshwater products, in 10,000 Yuan/year;

Q<sub>products i</sub>refers to the output of Type i freshwater products, in ton/year, based on statistical data of Department of Aquaculture, Animal Husbandry and Veterinary Services of Guangxi Zhuang Autonomous Region;

P<sub>prodicts i</sub>refers to the unit resource rent of Type i freshwater products, in Yuan/ton, based on the average market price in the very year in statistics of Department of Aquaculture, Animal Husbandry and Veterinary Services of Guangxi Zhuang Autonomous Region;

n refers to the number of types of freshwater products;

10<sup>-4</sup> is unit conversion coefficient.

#### (2) Value of Carbon sequestration

The value of Carbon sequestration is calculated with payment for ecosystem services method, by multiplying the quantity of Carbon sequestration by each type of forest by carbon market trading price. The calculation formula is:

$$V_{Carbon sequestration} = Q_{Carbon sequestration} \times T_c \times 10^{-4}$$

Where,

 $V_{Carbon sequestration}$  refers to the value of Carbon sequestration of freshwater ecosystem, in 10,000 Yuan/year;

Q<sub>Carbon sequestration</sub> refers to the quantity of carbon fixed by freshwater ecosystem, in ton/year;

T<sub>c</sub>refers to carbon market trading price, in Yuan/ton;

 $10^{-4}$  is unit conversion coefficient.

#### (3) Water purification value

It is calculated with expense analysis method. The calculation formula is:

$$V_{purification} = Q_{COD} \times C_{COD} \times 10^{-7}$$

Where,

V<sub>purification</sub> refers to the value of water purification, in 10,000 Yuan/year;

Q<sub>COD</sub>refers to chemical oxygen demand discharged to freshwater ecosystem every year, in ton/year, sourced from Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

C<sub>COD</sub> refers to cost on treatment per unit COD pollution equivalent, in Yuan/kg;

 $10^{-7}$  is unit conversion coefficient.

#### (4) Value of flood mitigation

The value of flood mitigation is calculated with replacement cost method. The cost on construction of a reservoir with the same capacity is the value of flood mitigation. The calculation method is:

 $V_{flood storage} = Q_{flood} \times P_{reservoir capacity}$ 

Where,

V<sub>flood storage</sub> refers to the value of flood mitigation, in 10,000 Yuan/year;

 $Q_{flood}$  is the available storage capacity(10<sup>4</sup> m<sup>3</sup>);

Preservior capacity refers to cost on construction per unit of reservoir capacity, inYuan/m<sup>3</sup>.

#### (5) Maintaining biodiversity value

It is calculated with benefit transfer method. The calculation formula is:

 $V_{biodiversity} = V_B \times S_{freshwater} \times 10^{-4}$ 

Where,

V<sub>biodiversity</sub>refers to the biodiversity value of freshwater ecosystem, in 10,000 Yuan/year;

V<sub>B</sub>refers to the biodiversity value maintained per unit area of freshwater, inYuan/hectare/year;

S<sub>freshwater</sub> refers to the area of freshwater, in hectare, based on statistical data of Department of Land and Resources of Guangxi Zhuang Autonomous Region;

10<sup>-4</sup> is unit conversion coefficient.

# (6) Value of Recreational services

The value of Recreational services is directly calculated based on the revenue from Recreational services. The calculation formula is:

$$V_{\text{Recreational services}} = \sum_{i=1}^{n} (R_{\text{water conservancy tourist attractioni}} + C_{\text{transport i}})$$

Where,

V<sub>Recreational services</sub> refers to the value of Recreational services, in 10,000 Yuan/year;

R<sub>water conservancy tourist attraction i</sub> refers to total operating revenue of A-class water conservancy tourist attraction i in Guangxi, in 10,000 Yuan/year, based on statistics obtained by Guangxi Tourism Administration according to the tourist attraction management system of National Tourism Administration;

C<sub>transport i</sub> refers to transport cost paid by visitors in the process of travelling inA-class water conservancy tourist attraction i in Guangxi, in 10,000 Yuan/year, based on statistics obtained by Guangxi Tourism Administration according to the domestic tourism sampling survey statistical system of National Tourism Administration;

n refers to the number of A-class and above water conservancy tourist attractions in Guangxi, based on statistics obtained by Guangxi Tourism Administration according to the tourist attraction management system of National Tourism Administration.

#### 4.5 Accounts for Wetland Ecosystem

|                    | River Water surface | Lake water surface | Reservoir Water surface | Pond water surface | Inland beaches | Forest bog | Shrub bog | Swampland | Other waters | Total |
|--------------------|---------------------|--------------------|-------------------------|--------------------|----------------|------------|-----------|-----------|--------------|-------|
| Opening stock      |                     |                    |                         |                    |                |            |           |           |              |       |
| Additions to stock |                     |                    |                         |                    |                |            |           |           |              |       |
| Reduction in stock |                     |                    |                         |                    |                |            |           |           |              |       |
| Closing stock      |                     |                    |                         |                    |                |            |           |           |              |       |

# Table 4-3 Wetland Ecosystem Extent Account (Unit: Hectare)

#### Table 4-4 Wetland Ecosystem Condition Account

|                                                                                   |         | <b>River Water surface</b> | Lake water surface | Reservoir Water surface | Pond water surface | Inland beaches | Forest bog | Shrub bog | Swampland | Other waters |
|-----------------------------------------------------------------------------------|---------|----------------------------|--------------------|-------------------------|--------------------|----------------|------------|-----------|-----------|--------------|
| Carbon sequestration rate per unit area<br>(t·hm <sup>-2</sup> ·a <sup>-1</sup> ) | Opening |                            |                    |                         |                    |                |            |           |           |              |

|                                                                          |         | River Water surface | Lake water surface | Reservoir Water surface | Pond water surface | Inland beaches | Forest bog | Shrub bog | Swampland | Other waters |
|--------------------------------------------------------------------------|---------|---------------------|--------------------|-------------------------|--------------------|----------------|------------|-----------|-----------|--------------|
|                                                                          | Closing |                     |                    |                         |                    |                |            |           |           |              |
| Annual water surface evaporation (mm)                                    | Opening |                     |                    |                         |                    |                |            |           |           |              |
|                                                                          | Closing |                     |                    |                         |                    |                |            |           |           |              |
| Supplemented underground water (m <sup>3</sup> ·a <sup>-</sup>           | Opening |                     |                    |                         |                    |                |            |           |           |              |
| ·)                                                                       | Closing |                     |                    |                         |                    |                |            |           |           |              |
| Annual chemical oxygen demand (t·a <sup>-1</sup> )                       | Opening |                     |                    |                         |                    |                |            |           |           |              |
|                                                                          | Closing |                     |                    |                         |                    |                |            |           |           |              |
| Maximum impoundment difference (m)                                       | Opening |                     |                    |                         |                    |                |            |           |           |              |
|                                                                          | Closing |                     |                    |                         |                    |                |            |           |           |              |
| Nitrogen removal per unit area<br>(t·hm <sup>-2</sup> ·a <sup>-1</sup> ) | Opening |                     |                    |                         |                    |                |            |           |           |              |

|                                        |         | River Water surface | Lake water surface | Reservoir Water surface | Pond water surface | Inland beaches | Forest bog | Shrub bog | Swampland | Other waters |
|----------------------------------------|---------|---------------------|--------------------|-------------------------|--------------------|----------------|------------|-----------|-----------|--------------|
|                                        | Closing |                     |                    |                         |                    |                |            |           |           |              |
| Phosphorus removal per unit area       | Opening |                     |                    |                         |                    |                |            |           |           |              |
| (t·hm <sup>-2</sup> ·a <sup>-1</sup> ) | Closing |                     |                    |                         |                    |                |            |           |           |              |

Table 4-5 Physical Account for Wetland Ecosystem

| Type of services      |                                    |  | Lake water surface | Reservoir Water surface | Pond water surface | Forest bog | Shrub bog | Swampland | Inland beaches | Other waters | Total |
|-----------------------|------------------------------------|--|--------------------|-------------------------|--------------------|------------|-----------|-----------|----------------|--------------|-------|
| Provisioning services | Wetland products(ton)              |  |                    |                         |                    |            |           |           |                |              |       |
|                       | Carbon sequestration               |  |                    |                         |                    |            |           |           |                |              |       |
| Regulating services   | (ton)                              |  |                    |                         |                    |            |           |           |                |              |       |
|                       | Water purification (ton)           |  |                    |                         |                    |            |           |           |                |              |       |
|                       | flood mitigation (m <sup>3</sup> ) |  |                    |                         |                    |            |           |           |                |              |       |
| Recreational services | Recreational services              |  |                    |                         |                    |            |           |           |                |              |       |

| Type of services      |                                   |  |  | <b>Reservoir Water surface</b> | Pond water surface | Forest bog | Shrub bog | Swampland | Inland beaches | Other waters | Total |
|-----------------------|-----------------------------------|--|--|--------------------------------|--------------------|------------|-----------|-----------|----------------|--------------|-------|
| Provisioning services | Value of wetland<br>products      |  |  |                                |                    |            |           |           |                |              |       |
|                       | Value of carbon sequestration     |  |  |                                |                    |            |           |           |                |              |       |
|                       | Value of water<br>purification    |  |  |                                |                    |            |           |           |                |              |       |
| Regulating services   | Value of flood<br>regulation      |  |  |                                |                    |            |           |           |                |              |       |
|                       | Value of<br>biodiversity          |  |  |                                |                    |            |           |           |                |              |       |
| Cultural services     | Value of<br>Recreational services |  |  |                                |                    |            |           |           |                |              |       |

# Table 4-6 Monetary Account for Wetland Ecosystem Services (Unit: RMB 10,000 )

# **Chapter 5 Valuation of Farmland Ecosystem Services**

# **5.1 Valuation Scope**

The valuation scope of farmland ecosystem includes the paddy field, irrigated land and dry land specified by the *Current Land Use Classification* (GB/T21010—2007).

| Table 5 1 | Connorandi  | ng Land Har | Classification | Seeme of Fermilar | d Facarratana |
|-----------|-------------|-------------|----------------|-------------------|---------------|
| Table 5-1 | Correspondi | ng lanu use |                | эсоре от гагинан  | u r.cosystem  |
|           |             |             |                |                   |               |

| Classification<br>code | Land use<br>type  | Remark                                                                                                                                                                                                                                           |
|------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0101                   | Paddy field       | The cultivated land for cultivating aquatic crops, including arable land for rotation of aquatic and xerophytic crops.                                                                                                                           |
| 0102                   | Irrigated<br>land | There are water guarantee and irrigation facilities for the cultivated<br>land, which can be irrigated normally in a year, and grow dry crops<br>(including vegetables), including the non-factory greenhouse land<br>for vegetable cultivation. |
| 0103                   | Dry land          | The cultivated land has no irrigation facilities, mainly relies on<br>natural precipitation to grow dry crops, including the arable land that<br>has no irrigation facilities and only relies on flood diversion and silt<br>irrigation.         |

# 5.2 Valuation Indicators System

The valuation indicators system of farmland ecosystem services includes three levels of indicators, including 3 first-level indicators, 5 second-level indicators and 8 third-level indicators.

| First-level<br>indicators | Second-level<br>indicators          | Third-level indicators       | Content            |
|---------------------------|-------------------------------------|------------------------------|--------------------|
| Provisioning services     | Provisioning food and raw materials | Agricultural products        | Physical, Monetary |
|                           | Carbon sequestration                | Carbon sequestration         | Physical, Monetary |
|                           |                                     | Absorbing sulfur dioxide     | Physical, Monetary |
| Regulating                | Purifying atmosphere                | Absorbing fluoride           | Physical, Monetary |
| services                  |                                     | Absorbing nitrogen<br>oxides | Physical, Monetary |
|                           |                                     | Dust retention               | Physical, Monetary |
|                           | Soil conservation                   | Soil retention               | Physical, Monetary |
| Cultural services         | Recreational services               | Agricultural tourism         | Physical, Monetary |

| Table 5-7 The valuation | Indicators System | of Farmland Fo   | osystem Servi  | ces in Guanavi   |
|-------------------------|-------------------|------------------|----------------|------------------|
| Table 3-2 The valuation | inulcators system | i of Farmhanu EC | Jusystem Servi | Ces III Gualigai |
#### 5.3 Physical methods

#### (1) Agricultural Products

The calculation formula is:

$$Q_{agriculture} = \sum_{i=1}^{n} Q_{agricultural product i}$$

In the formula:

Q<sub>agriculture</sub> is the total yield of agricultural products, unit: tons/year;

Qagricultural product i is the yield of type i agricultural product, unit: tons/year;

n is the number of agricultural products types.

#### (2) Carbon Sequestration

The calculation formula is:

$$Q_{carbon sequestration} = \sum_{i=1}^{n} NEP_i \times S_i \times 1.63 \times 0.273$$

In the formula:

Q<sub>carbon sequestration</sub> is the total amount carbon sequestration quantity of farmland, unit: tons/year;

n is the number of crop species;

NEP<sub>i</sub> is the net ecosystem productivity of type i crop per unit area, unit: tons/hectare·year;

S<sub>i</sub> is the sowing area of type i crop, unit: hectare;

1.63 is the coefficient of carbon sequestration; 0.273 is the carbon content in carbon dioxide. (the cite source of 1.63 and 0.273 is *Specifications for assessment of forest ecosystem services in China*).

## (3) Absorbing Sulfur Dioxide (SO<sub>2</sub>)

The calculation formula is:

$$Q_{SO_2} = \sum_{i=1}^{n} Q_{SO_{2i}} \times S_i \times 10^{-3}$$

In the formula:

 $Q_{SO_2}$  is the total amount of  $SO_2$  absorbed by farmland, unit: tons/year;

n is the number of crop species;

 $Q_{SO_{2i}}$  is the amount of SO<sub>2</sub> absorbed by type i crop per unit area, unit: kg/hectare·year;

 $S_i$  is the sowing area of type i crop, unit: hectare;

 $10^{-3}$  is the unit conversion coefficient.

# (4) Absorbing Fluoride (HF)

The calculation formula is:

$$Q_{HF} = \sum_{i=1}^{n} Q_{HFi} \times S_i \times 10^{-3}$$

In the formula:

Q<sub>HF</sub> is the total amount of HF absorbed by farmland, unit: tons/year;

n is the number of crop species;

Q<sub>HFi</sub> is the amount of HF absorbed by type i crop per unit area, unit: kg/hectare·year;

S<sub>i</sub> is the sowing area of type i crop, unit: hectare;

 $10^{-3}$  is the unit conversion coefficient.

# (5) Absorbing Nitrogen Oxides (NO<sub>X</sub>)

The calculation formula is:

$$Q_{NO_X} = \sum_{i=1}^{n} Q_{NO_X i} \times S_i \times 10^{-3}$$

In the formula:

 $Q_{\text{NO}_{X}}$  is the total amount of  $\,\text{NO}_{X}\,$  absorbed by farmland, unit: tons/year;

n is the number of crop species;

 $Q_{NO_{\rm X}i}\,$  is the amount of  $NO_{\rm X}$  absorbed by type i crop per unit area, unit: kg/hectare·year;

S<sub>i</sub> is the sowing area of type i crop, unit: hectare;

 $10^{-3}$  is the unit conversion coefficient.

#### (6) Dust Retention

The calculation formula is:

$$Q_{dust \ retention} = \sum_{i=1}^{n} Q_{dust \ i} \times S_i \times 10^{-3}$$

In the formula:

Q<sub>dust retention</sub> is the total amount of farmland dust retention, unit: tons/year;

n is the number of crop species;

 $Q_{dust i}$  is the amount of dust absorbed by type i crop per unit area, unit: kg/hectare·year;

S<sub>i</sub> is the sowing area of type i crop, unit: hectare;

 $10^{-3}$  is the unit conversion coefficient.

### (7) Soil retention

Soil conservation quantity, namely the amount of reduced silt accumulation, is measured by the difference between potential soil erosion amount and actual soil erosion amount. In which, soil erosion amount is evaluated by the general soil and water loss equation.

$$Q_{\text{soil}} = R \cdot K \cdot LS \cdot C \cdot P$$
$$Q_{\text{soil retention}} = R \cdot K \cdot LS \cdot (1 - C \cdot P)$$

In the formula:  $Q_{soil}$  is annual soil loss; *R* is rainfall erosion factor; *K* is soil erodibility factor; *LS* is slope length factor; *C* is vegetation cover factor; *P* is soil and water conservation measure factor.  $Q_{soil retention}$  is the total soil retention quantity of farmland.

# (8) Recreational services

The physical accounting method is using the statistical data of the number of tourists in the farmland scenic spots obtained by the tourism department.

#### 5.4 Monetary methods

## (1) agricultural output value

Agricultural products of field ecosystem are composed mainly of food crops and economic crops, with the former mainly including rice, corns, soybeans, sweet potatoes and potatoes, and the latter mainly including vegetables, fruits, sugarcanes, silkworms and edible mushrooms. Market price approach is employed in the calculation, where output of each type of agricultural products is multiplied by market price in the very year to obtain agricultural output value. The calculation formula is:

$$V_{agriculture} = \sum_{i=1}^{n} Q_{agricultural \, product \, i} \times P_{agricultural \, product \, i} \times 10^{-4}$$

Where,

Vagriculture refers to agricultural output value, in 10,000 Yuan/year;

Q<sub>agricultural product i</sub> refers to the output of Type i agricultural products, in ton/year, based on statistics in *Guangxi Statistical Yearbook* and from Department of Agriculture of Guangxi Zhuang Autonomous Region;

P<sub>agricultural product i</sub> refers to the price of Type i agricultural products, in Yuan/ton, based on the average market price in the very year in statistics of Department of Agriculture of Guangxi Zhuang Autonomous Region;

nrefers to the number of types of agricultural products;

 $10^{-4}$  is unit conversion coefficient.

# (2) Value of Carbon sequestration

The value of Carbon sequestration is calculated with payment for ecosystem services method, by multiplying the quantity of Carbon sequestration by each type of forest by carbon market trading price. The calculation formula is:

$$V_{Carbon \, sequestration} = \sum_{i=1}^{n} Q_{Carbon \, sequestration \, i} \times T_{C} \times 10^{-4}$$

Where,

V<sub>Carbon sequestration</sub> refers to the value of Carbon sequestration of fields, in 10,000 Yuan/year;

T<sub>C</sub> refers to carbon tax price, in Yuan/ton, see Appendix for detailed data sources, the same below;

Q<sub>Carbon sequestration i</sub> refers to the quantity of carbon fixed in Type i fields, in ton/year;

n refers to the number of field types, based on type data in the statistics of Department of Agriculture of Guangxi Zhuang Autonomous Region, the same below;

 $10^{-4}$  is unit conversion coefficient.

And

$$Q_{Carbon sequestration i} = NPP_i \times S_i \times 1.63 \times 0.273$$

Where,

 $NPP_i$  refers to net primary productivity per unit area of fields on which Type i crops grow, in ton/hectare· year, based on monitoring data of Department of Agriculture of Guangxi Zhuang Autonomous Region, the same below;

S<sub>i</sub> refers to sowing area of Type i crops, in hectare, based on data in Guangxi Statistical Yearbook, the same below;

1.63 is Carbon sequestration coefficient;

0.273 is carbon content in carbon dioxide.

#### (3) Value of sulfur dioxide absorption

The value of sulfur dioxide absorption is calculated with expense analysis method. The quantity of sulfur dioxide absorbed by each type of fields is multiplied by area of such type of fields to obtain the quantity of sulfur dioxide absorbed, and then the value of sulfur dioxide absorption is calculated based on cost on treatment of sulfur dioxide. The calculation formula is:

$$V_{SO_2} = \sum_{i=1}^{n} Q_{SO_2i} \div 0.95 \times C_{SO_2} \times 10^{-4}$$

Where,

V<sub>SO<sub>2</sub></sub> refers to the value of SO<sub>2</sub> absorption of fields, in 10,000 Yuan/year;

 $Q_{SO_2i}$  refers to the quantity of  $SO_2$  absorbed by Type i crops, in kg/year;

0.95 is the equivalent value of sulfur dioxide pollution, in kg, which is derived from *Measures for the Administration of the Charging Rates for Pollutant Discharge Fees* (Decree No.369 of the State Council);

 $C_{SO_2}$  refers to cost on treatment per SO<sub>2</sub>pollution equivalent, in Yuan/kg, see Appendix for detailed data sources, the same below;

n refers to the number of types of crops;

 $10^{-4}$  is unit conversion coefficient.

And

$$Q_{SO_2i} = Q_{unit SO_2i} \times S_i$$

Where,

 $Q_{unit SO_2i}$  refers to the quantity of SO<sub>2</sub> absorbed per unit area of Type i crops, in kg/hectare· year, based on monitoring data of Department of Environmental Protection of Guangxi Zhuang

Autonomous Region, the same below;

S<sub>i</sub> refers to sowing area of Type i crops, in hectare.

#### (4) Value of fluoride absorption

The value of fluoride absorption is calculated with expense analysis method. The quantity of fluoride absorbed by each type of crops is multiplied by sowing area of such type of crops to obtain the quantity of fluoride absorbed, and then the value of fluoride absorption is calculated based on cost on treatment of fluoride. The calculation formula is:

$$V_{HF} = \sum_{i=1}^{n} Q_{HFi} \times C_{HF} \times 10^{-4}$$

Where,

V<sub>HF</sub> refers to the value of HF absorption of fields, in 10,000 Yuan/year;

Q<sub>HFi</sub> refers to the quantity of HF absorbed by Type i crops, in kg/year;

C<sub>HF</sub> refers to cost on treatment per unit HF, in Yuan/kg, see Appendix for detailed data sources, the same below;

n refers to the number of types of crops;

 $10^{-4}$  is unit conversion coefficient.

And

$$Q_{HFi} = Q_{unit HFi} \times S_i$$

Where,

 $Q_{unit HFi}$  refers to the quantity of HF absorbed per unit area of Type i crops, in kg/hectare·year, based on monitoring data of Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

S<sub>i</sub> refers to sowing area of Type i crops, in hectare.

#### (5) Value of nitric oxide absorption

The value of nitric oxide absorption is calculated with expense analysis method. The quantity of nitric oxide absorbed by each type of fields is multiplied by the area of such type of fields to obtain the quantity of nitric oxide absorbed, and then the value of nitric oxide absorption is calculated based on cost on treatment of nitric oxide. The calculation formula is:

$$V_{NO_X} = \sum_{i=1}^{n} Q_{NO_X i} \div 0.95 \times C_{NO_X} \times 10^{-4}$$

Where,

 $V_{NO_X}$  refers to the value of NO<sub>X</sub> absorption of fields, in 10,000 Yuan/year;

 $Q_{NO_Xi}$  refers to the quantity of NO<sub>X</sub> absorbed by Type i crops, in kg/year;

0.95 is the equivalent value of nitric oxide pollution, in kg, which is derived from *Measures for the Administration of the Charging Rates for Pollutant Discharge Fees* (Decree No.369 of the State Council);

 $C_{NO_X}$  refers to cost on treatment per  $NO_X$  pollution equivalent, in Yuan/kg, see Appendix for detailed data sources, the same below;

n refers to the number of crop types;

 $10^{-4}$  is unit conversion coefficient.

And

$$Q_{NO_X i} = Q_{unit NO_X i} \times S_i$$

Where,

 $Q_{unit NOXi}$  refers to the quantity of NO<sub>X</sub> absorbed per unit area of Type i crops, in kg/hectare· year, based on monitoring data of Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

S<sub>i</sub> refers to sowing area of Type i crops, in hectare.

# (6) Value of dust detaining

The value of dust detaining is calculated with expense analysis method. The quantity of dust absorbed by each type of fields is multiplied by the area of such type of fields to obtain the quantity of dust absorbed, and then the value of dust adsorption is calculated based on cost on treatment of dust. The calculation formula is:

$$V_{dust \ detaining} = \sum_{i=1}^{n} Q_{dust \ i} \times C_{dust} \times 10^{-4}$$

Where,

V<sub>dust detaining</sub> refers to the value of dust detaining of fields, in 10,000 Yuan/year;

Q<sub>dust i</sub> refers to the quantity of dust absorbed by Type i crops, in kg/year;

C<sub>dust</sub> refers to cost on dust cleaning, in Yuan/kg, see Appendix for detailed data sources, the same below;

n refers to the number of crop types;

 $10^{-4}$  is unit conversion coefficient.

And

$$Q_{dust i} = Q_{unit dust i} \times S_i$$

Where,

Q<sub>unit dust i</sub> refers to the quantity of dust absorbed per unit area of Type i crops, in kg/hectare.year, based on monitoring data of Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

S<sub>i</sub> refers to sowing area of Type i crops, in hectare.

#### (7) Soil retention value

Sediment resulting from soil erosion is silted up in reservoirs, reducing the volume of water accumulated in reservoirs. Soil retention value is calculated with shadow project method, that is, soil retention value of fields is measured through the calculation of earthwork excavation (the shadow project) cost. The calculation formula is:

$$V_{soil \ retention} = 100 \sum_{i=1}^{n} Q_{soil \ retention \ i} \times C_{earthwork} / \rho_i$$

Where,

V<sub>soil retention</sub> refers to soil retention value of fields, in 10,000 Yuan/year;

Q<sub>soil retention i</sub> refers to the quantity of soil fixed by Type i fields, in ton/year;

 $\rho_i$  refers to soil bulk density of Type i fields, in ton/m<sup>3</sup>, based on monitoring data of Department of Agriculture of Guangxi Zhuang Autonomous Region;

 $C_{earthwork}$  refers to cost on excavation and transportation of earthwork per unit volume, in Yuan/m<sup>3</sup>, see Appendix for detailed data sources, the same below;

n refers to the number of field types;

100 is unit conversion coefficient.

And

$$Q_{\text{soil retention}} = \mathbf{R} \cdot \mathbf{K} \cdot \mathbf{LS} \cdot (1 - \mathbf{C} \cdot \mathbf{P})$$

In the formula: R is rainfall erosion factor; K is soil erodibility factor; LS is slope length factor; C is vegetation cover factor; P is soil and water conservation measure factor.  $Q_{soil retention}$  is the total soil retention quantity of farmland.

#### (8) value of agricultural tourism

The value of leisure and sightseeing agricultural tourism is calculated with expense analysis method, and the value of leisure and sightseeing agricultural recreational services is estimated through the sum of agriculture-related total operating revenue and transport cost of A-class tourist attractions in Guangxi. The calculation formula is:

$$V_{tourism} = \sum_{i=1}^{n} (R_{farm i} + C_{transport i})$$

Where,

V<sub>tourism</sub> refers to the value of leisure and sightseeing agricultural tourism, in 10,000 Yuan/year;

R<sub>farm i</sub> refers to total operating revenue of agriculture-related A-class tourist attraction i, in 10,000 Yuan/year, based on statistics obtained by Guangxi Tourism Administration according to the tourist attraction management system of National Tourism Administration;

C<sub>transport i</sub> refers to transport cost paid by visitors in the process of travelling in the agriculturerelated A-class tourist attractioni, in 10,000 Yuan/year, based on statistics obtained by Guangxi Tourism Administration according to the domestic tourism sampling survey statistical system of National Tourism Administration;

n refers to the number of agriculture-related A-class tourist attractions in Guangxi, based on statistics obtained by Guangxi Tourism Administration according to the tourist attraction management system of National Tourism Administration.

#### 5.5 Accounts for Farmland Ecosystem

Table 5-3 Farmland Ecosystem Extent Account(Unit: Hectare)

|                       | Sugarcane | Rice | Maize | Soybean | Potatoes | •••• | Total |
|-----------------------|-----------|------|-------|---------|----------|------|-------|
| Opening<br>stock      |           |      |       |         |          |      |       |
| Additions<br>to stock |           |      |       |         |          |      |       |
| Reduction<br>in stock |           |      |       |         |          |      |       |
| Closing<br>stock      |           |      |       |         |          |      |       |

|                                                                              |         | Sugarcane | Rice | Maize | Soybean | Potatoes | : |
|------------------------------------------------------------------------------|---------|-----------|------|-------|---------|----------|---|
| Net productivity per unit                                                    | Opening |           |      |       |         |          |   |
| $(t \cdot hm^{-2} \cdot a^{-1})$                                             | Closing |           |      |       |         |          |   |
| Sulfur dioxide uptake per unit                                               | Opening |           |      |       |         |          |   |
| $(\mathrm{kg}\cdot\mathrm{hm}^{-2}\cdot\mathrm{a}^{-1})$                     | Closing |           |      |       |         |          |   |
| Fluoride uptake per unit                                                     | Opening |           |      |       |         |          |   |
| $(\text{kg}\cdot\text{hm}^{-2}\cdot\text{a}^{-1})$                           | Closing |           |      |       |         |          |   |
| Nitrogen oxides uptake per unit                                              | Opening |           |      |       |         |          |   |
| $(\text{kg}\cdot\text{hm}^{-2}\cdot\text{a}^{-1})$                           | Closing |           |      |       |         |          |   |
| Annual dust retention quantity per unit                                      | Opening |           |      |       |         |          |   |
| $(kg \cdot hm^{-2} \cdot a^{-1})$                                            | Closing |           |      |       |         |          |   |
|                                                                              | Opening |           |      |       |         |          |   |
| Annual precipitation(mm)                                                     | Closing |           |      |       |         |          |   |
| Annual evapotranspiration coefficient                                        | Opening |           |      |       |         |          |   |
| rundar orapotranspiration coornerent                                         | Closing |           |      |       |         |          |   |
| Farmland runoff rate                                                         | Opening |           |      |       |         |          |   |
|                                                                              | Closing |           |      |       |         |          |   |
| Nitrogen content of crops (%)                                                | Opening |           |      |       |         |          |   |
|                                                                              | Closing |           |      |       |         |          |   |
| Phosphorus content of crops (%)                                              | Opening |           |      |       |         |          |   |
|                                                                              | Closing |           |      |       |         |          |   |
| Potassium content of crops (%)                                               | Opening |           |      |       |         |          |   |
| roussian content of clops (70)                                               | Closing |           |      |       |         |          |   |
| Farmland soil erosion modulus                                                | Opening |           |      |       |         |          |   |
| $(t \cdot hm^{-2} \cdot a^{-1})$                                             | Closing |           |      |       |         |          |   |
| Erosion modulus of uncovered farmland (t·hm <sup>-2</sup> ·a <sup>-1</sup> ) | Opening |           |      |       |         |          |   |

# Table 5-4 Farmland Ecosystem Condition Account

|                                           |         | Sugarcane | Rice | Maize | Soybean | Potatoes | : |
|-------------------------------------------|---------|-----------|------|-------|---------|----------|---|
|                                           | Closing |           |      |       |         |          |   |
| Volume weight of soil(t·m <sup>-3</sup> ) | Opening |           |      |       |         |          |   |
|                                           | Closing |           |      |       |         |          |   |

# Table 5-5 Physical Account for Farmland Ecosystem

| Type of services      |                                | Sugarcane | Rice | Maize | Soybean | Potatoes | : | Total |
|-----------------------|--------------------------------|-----------|------|-------|---------|----------|---|-------|
| Provisioning services | Agricultural products (ton)    |           |      |       |         |          |   |       |
|                       | Carbon sequestration(ton)      |           |      |       |         |          |   |       |
|                       | Absorbing sulfur dioxide(ton)  |           |      |       |         |          |   |       |
| Regulating services   | Absorbing fluoride(ton)        |           |      |       |         |          |   |       |
|                       | Absorbing nitrogen oxides(ton) |           |      |       |         |          |   |       |
|                       | Dust retention (ton)           |           |      |       |         |          |   |       |
|                       | Soil retention(ton)            |           |      |       |         |          |   |       |
| Cultural services     | Recreational services          |           |      |       |         |          |   |       |

# Table 5-6 Monetary Account for Farmland Ecosystem (Unit: RMB 10,000)

| Туре о                   | of services           | Sugarcane | Rice | Maize | Soybean | Potatoes | <br>Total |
|--------------------------|-----------------------|-----------|------|-------|---------|----------|-----------|
| Provisioning<br>services | Agricultural products |           |      |       |         |          |           |
| Regulating services      | Carbon sequestration  |           |      |       |         |          |           |

| Туре о            | of services                  | Sugarcane | Rice | Maize | Soybean | Potatoes | : | Total |
|-------------------|------------------------------|-----------|------|-------|---------|----------|---|-------|
|                   | Absorbing sulfur<br>dioxide  |           |      |       |         |          |   |       |
|                   | Absorbing<br>fluoride        |           |      |       |         |          |   |       |
|                   | Absorbing<br>nitrogen oxides |           |      |       |         |          |   |       |
|                   | Dust retention               |           |      |       |         |          |   |       |
|                   | Soil retention               |           |      |       |         |          |   |       |
| Cultural services | Recreational services        |           |      |       |         |          |   |       |

# **Chapter 6 Valuation of Urban Ecosystem Services**

# 6.1 Valuation Scope

The valuation scope of urban ecosystem includes the urban parks and green land, wetland and farmland in the established towns and cities of Guangxi (including designated towns).

# Table 6-1 Corresponding Land Use Classification Scope of Urban Ecosystem

| Classification<br>code | Land use<br>type     | Remark                                                                                                                                                                                                       |
|------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0810                   | Parks and green land | Parks, zoos, botanical gardens, street gardens, squares and other green<br>land for recreation, beautification and protection within the built-up<br>areas of towns and cities (including designated towns). |

# 6.2 Valuation Indicators System

The valuation indicators system of urban ecosystem services consists of 3 levels of indicators, including 3 first-level indicators, 7 second-level indicators and 10 third-level indicators.

| First-level<br>indicators | Second-level indicators       | Third-level indicators     | Content            |
|---------------------------|-------------------------------|----------------------------|--------------------|
|                           | Carbon sequestration          | Carbon sequestration       | Physical, Monetary |
|                           |                               | Absorbing sulfur dioxide   | Physical, Monetary |
|                           | Purifying atmosphere          | Absorbing fluoride         | Physical, Monetary |
| Regulating                |                               | Absorbing nitrogen oxides  | Physical, Monetary |
|                           |                               | Dust retention             | Physical, Monetary |
|                           | Soil conservation             | Soil retention             | Physical, Monetary |
|                           | Water conservation            | Conserving water resources | Physical, Monetary |
|                           | Regulating climate            | Regulating temperature     | Physical, Monetary |
|                           | Protection of<br>biodiversity | Species diversity          | Monetary           |
| Cultural services         | Recreational services         | Urban tourism              | Physical, Monetary |

Table 6-2 Valuation Indicators System of Urban Ecosystem Services in Guangxi

# **6.3 Physical methods**

# (1) Carbon Sequestration

The calculation formula is:

$$Q_{\text{carbon sequestration}} = \sum_{i=1}^{n} \text{NEP}_i \times S_i \times 1.63 \times 0.273$$

In the formula:

Q<sub>carbon sequestration</sub> is the carbon sequestration quantity of urban ecosystem, unit: tons/year;

n is the number of urban land use types;

NEP<sub>i</sub> is the net ecosystem productivity of type i land use per unit area, unit: tons/hectare year;

S<sub>i</sub> is the area for type i land use, unit: hectare;

1.63 is the coefficient of carbon sequestration, Plants can absorb  $1.63g \text{ CO}_2$  after accumulating 1 g dry matter; 0.273 is the carbon content in carbon dioxide. (the cite source of 1.63 and 0.273 is *Specifications for assessment of forest ecosystem services in China*).

#### (2) Absorbing Sulfur Dioxide (SO<sub>2</sub>)

The calculation formula is:

$$Q_{SO_2} = \sum_{i=1}^{n} Q_{SO_{2i}} \times S_i \times 10^{-3}$$

In the formula:

 $Q_{SO_2}$  is the annual amount of  $SO_2$  absorbed by urban ecosystem, unit: tons/year;

S<sub>i</sub> is the area for type i land use, unit: hectare;

 $Q_{SO_{2i}}$  is the annual amount of  $SO_2$  absorbed by type i land per unit area, unit: kg/hectare·year;

 $10^{-3}$  is the unit conversion coefficient.

# (3) Absorbing Fluoride (HF)

The calculation formula is:

$$Q_{HF} = \sum\nolimits_{i=1}^{n} Q_{HFi} \times S_i \times 10^{-3}$$

In the formula:

Q<sub>HF</sub> is the annual amount of HF absorbed by urban ecosystem, unit: tons/year;

Q<sub>HFi</sub> is the annual amount of HF absorbed by type i land per unit area, unit: kg/hectare·year;

 $S_i$  is the area of type i urban land, unit: hectare;

 $10^{-3}$  is the unit conversion coefficient.

# (4) Absorbing Nitrogen Oxides(NO<sub>X</sub>)

The calculation formula is:

$$Q_{NO_X} = \sum_{i=1}^{n} Q_{NO_{Xi}} \times S_i \times 10^{-3}$$

In the formula:

 $Q_{NO_{\rm X}}$  is the annual amount of  $\,NO_{\rm X}\,$  absorbed by urban ecosystem, unit: tons/year;

 $Q_{NO_{Xi}}$  is the annual amount of NO<sub>X</sub> absorbed by type i land per unit area, unit: kg/hectare·year;

S<sub>i</sub> is the area of type i urban land, unit: hectare;

 $10^{-3}$  is the unit conversion coefficient.

#### (5) Dust Retention

The calculation formula is:

$$Q_{dust \, retention} \, = \sum\nolimits_{i=1}^{n} \! Q_{dust \, retention \, i} \times S_i \times 10^{-3}$$

In the formula:

Q<sub>dust retention</sub> is the annual dust retention of urban ecosystem, unit: tons/year;

Q<sub>dust retention i</sub> is the annual dust retention of urban type i land per unit area, unit: kg/year hectare;

S<sub>i</sub> is the area of type i urban land, unit: hectare;

 $10^{-3}$  is the unit conversion coefficient.

The PM2.5 absorbed and retained is measured separately. The total amount of PM2.5 deposited in an ecosystem can be estimated as a function of regional area, deposition velocity, time period and average ambient PM2.5 concentration. The formula is as follows:  $PM\downarrow=A\times Vd\times t\times C$ , in which  $PM\downarrow=$  amount of precipitated PM2.5 (kg), A= regional area (m<sup>2</sup>), Vd=deposition velocity as a function of the leaf area index of the vegetation (mm.s<sup>-1</sup>), t=time (s), C= ambient PM2.5 concentration (kg/m<sup>3</sup>). The the deposition velocity depends on the vegetation type.

## (6) Soil retention

The calculation formula is:

$$Q_{soil} = R \cdot K \cdot LS \cdot C \cdot P$$

$$Q_{\text{soil retention}} = R \cdot K \cdot LS \cdot (1 - C \cdot P)$$

In the formula:  $Q_{soil}$  is annual soil loss; *R* is rainfall erosion factor; *K* is soil erodibility factor; *LS* is slope length factor; *C* is vegetation cover factor; *P* is soil and water conservation measure factor.  $Q_{soil retention}$  is the total soil retention quantity of farmland.

#### (7) Conserving Water Resources

The calculation formula is:

$$Q_{water \ conservation} = \sum_{i=1}^{n} S_i \times P_i \times (1 - E_i - R_i) \times 10$$

In the formula:

Qwater conservation is the total amount of water conserved by urban ecosystem, unit: tons/year;

S<sub>i</sub> is the area of type i urban land, unit: hectare;

P<sub>i</sub> is the precipitation of type i urban land, unit: mm/year;

E<sub>i</sub> is the evapotranspiration rate of type i urban land, unit: %;

R<sub>i</sub> is the surface runoff rate of type i urban land, unit: %;

10 is the unit conversion coefficient.

# (8) Regulating Temperature

The calculation formula is:

$$Q_{heat} = S_{water surface} \times E \times \gamma \times 10^4$$

In the formula:

Q<sub>heat</sub> is the heat absorbed by water surface evaporation, unit: kJ/year;

S<sub>water surface</sub> is the area of urban water surface, unit: hectare;

E is the average water surface evaporation of many years, unit: mm/year;

 $10^4$  is the unit conversion coefficient.;

 $\gamma$  is the heat of vaporization of water, unit: kJ/kg.

#### (9) Recreational services

The physical accounting method is using the statistical data of the number of tourists in the city green space scenic spots obtained by the tourism department.

#### 6.4 Monetary methods

#### (1) Carbon sequestration

The value of Carbon sequestration is calculated with payment for ecosystem services method, by multiplying the quantity of Carbon sequestration by each type of forest by carbon market trading price. The calculation formula is:

$$V_{\text{Carbon sequestration}} = Q_{\text{Carbon sequestration}} \times T_C \times 10^{-4}$$

Where:

 $V_{\text{Carbon sequestration}}$  refers to the Carbon sequestration value of city green space, in 10,000 Yuan/year;

 $Q_{\text{Carbon sequestration}}$  refers to the Carbon sequestration amount of city green space, in ton/year;

T<sub>C</sub> refers to carbon market trading price, in Yuan/ton;

 $10^{-4}$  refers to unit conversion coefficient.

# (2) Value of SO<sub>2</sub> absorption

The value of  $SO_2$  absorption is calculated by expense analysis method, the benefit of which is calculated by  $SO_2$  absorption and charges on  $SO_2$  per emission equivalent. The calculation formula is:

$$V_{SO_2} = Q_{SO_2} \div 0.95 \times C_{SO_2} \times 10^{-4}$$

Where,

 $V_{SO_2}$  refers to the value of SO<sub>2</sub> absorption of city green space, in 10,000 Yuan/year;

 $Q_{SO_2}$  refers to SO<sub>2</sub> absorption of city green space, in kg/year;

0.95 refers to SO<sub>2</sub> equivalent value. It is specified in Administrative Regulations on Levy and Use of Pollutant Discharge Fee (No. 369 of Decree of the State Council) that SO<sub>2</sub> equivalent value should be 0.95;

 $C_{SO_2}$  refers to charges on SO<sub>2</sub> emission per pollution equivalent;

 $10^{-4}$  refers to unit conversion coefficient.

Where,

 $Q_{SO_2} = Q_{SO_2 \text{ per unit area}} \times S_{\text{green space}}$ 

 $S_{\text{green space}}$  refers to the area of city green space, in hectare;

 $Q_{SO_2}$  refers to SO<sub>2</sub> absorption on an annual basis, in kg/year;

 $Q_{SO_2 \text{ per unit area}}$  refers to the absorption of SO<sub>2</sub> per unit are every year, in kg/year. hectare, sourced from Department of Environmental Protection of Guangxi Zhuang Autonomous Region. As city green space is mainly featured by broad-leaved forest, if built-up areas are provided with special monitoring data on broad-leaved forest, it is recommended to use such special data. If there is no relevant local data, reference can be made to SO<sub>2</sub> absorption per unit area of broad-leaved forest in Forest Ecosystem Services Valuation of the Guidelines;

## (3) Value of fluoride absorption

The value of fluoride absorption is calculated by expense analysis method, the benefit of which is calculated by fluoride absorption and treatment costs of fluoride per kg. The calculation formula is:

$$V_{HF} = Q_{HF} \times C_{HF} \times 10^{-4}$$

Where,

 $V_{HF}$  refers to the annual fluoride value of city green space, in 10,000 Yuan/year;

 $Q_{HF}$  refers to annual fluoride absorption of city green space, in kg/year;

 $C_{HF}$  refers to the treatment costs of fluoride per kg, in Yuan/kg;

 $10^{-4}$  refers to unit conversion coefficient.

And

$$Q_{HF} = Q_{HF \ per \ kg} \times S_{\text{green space}}$$

Where,

 $Q_{HF}$  refers to the annual SO<sub>2</sub> absorption of city green space, in kg/hectare;

 $Q_{HF \ per \ unit \ area}$  refers to the absorption of nitrogen oxide per unit are every year, in kg/year. hectare, sourced from Department of Environmental Protection of Guangxi Zhuang Autonomous Region. As city green space is mainly featured by broad-leaved forest, if built-up areas are provided with special monitoring data on broad-leaved forest, it is recommended to use such special data. If there is no relevant local data, reference can be made to fluoride absorption per unit area of broad-leaved forest in Forest Ecosystem Services Valuation of the Guidelines;

 $S_{\text{green space}}$  refers to the area of city green space, in hectare.

## (4) Value of nitrogen oxide absorption

The value of nitrogen oxide absorption is calculated by expense analysis method, the benefit of

which is calculated by nitrogen oxide absorption and charges on fluoride per emission equivalent. The calculation formula is

$$V_{NO_X} = Q_{NO_X} \div 0.95 \times C_{NO_X} \times 10^{-4}$$

Where,

 $V_{NO_x}$  refers to the annual nitrogen oxide absorption value of city green space, in 10,000 Yuan/year;

0.95refers to nitrogen oxide pollution equivalent value, in kg. It is specified in Administrative Regulations on Levy and Use of Pollutant Discharge Fee(No. 369 of Decree of the State Council) that nitrogen oxide pollution equivalent value should be 1;

 $C_{NO_x}$  charges on SO<sub>2</sub> emission per pollution equivalent;

 $10^{-4}$  refers to unit conversion coefficient.

And

 $Q_{NO_X} = S_{\text{green space}} \times Q_{NO_X \text{ per kg}}$ 

Where,

 $Q_{NO_{x}}$  refers to annual nitrogen oxide absorption value of city green space, in kg/hectare;

 $S_{\text{green space}}$  refers to the area of city green space, in hectare;

 $Q_{NO_X \text{per unit area}}$  refers to the absorption of nitrogen oxide per unit area every year, in kg/year. hectare, sourced from Department of Environmental Protection of Guangxi Zhuang Autonomous Region. As city green space is mainly featured by broad-leaved forest, if built-up areas are provided with special monitoring data on broad-leaved forest, it is recommended to use such special data. If there is no relevant local data, reference can be made to dust absorption per unit area of broadleaved forest in Forest Ecosystem Services Valuation of the Guidelines.

## (5) Value of dust absorption

The value of dust absorption is calculated by expense analysis method, the benefit of which is calculated by dust absorption and charges on dust treatment per kg. The calculation formula is:

 $V_{\text{dust absorption}} = Q_{\text{dust absorption}} \times C_{\text{dust absorption}} \times 10^{-4}$ 

Where,

V<sub>dust absorption</sub> refers to dust absorption value of city green space, in 10,000 Yuan/year;

 $Q_{\text{dust absorption}}$  refers to the amount of dust absorption of city green space, in kg/year;

C<sub>dust absorption</sub> refers to the charges on dust fall cleanup, in Yuan/kg;

 $10^{-4}$  refers to unit conversion coefficient.

And

$$Q_{\text{dust absorption}} = Q_{\text{dust absorption per unit area}} \times S_{\text{city}}$$

Where,

 $Q_{\text{dust absorption}}$  refers to dust absorption of city green space, in kg/year;

 $S_{\text{city}}$  refers to the area of city green space, in hectare;

 $Q_{\text{dust absorption per unit area}}$  refers to the absorption of nitrogen oxide per unit area every year, in kg/year. hectare, sourced from Department of Environmental Protection of Guangxi Zhuang Autonomous Region. As city green space is mainly featured by broad-leaved forest, if built-up areas are provided with special monitoring data on broad-leaved forest, it is recommended to use such

special data. If there is no relevant local data, reference can be made to dust absorption per unit area of broad-leaved forest in Forest Ecosystem Services Valuation of the Guidelines.

#### (6) Soil retention value

he calculation formula is:

$$V_{soil retention} = \sum_{i=1}^{n} Q_{soil retention i} \times C_{earthwork} / \rho_i \times 10^{-4}$$

Where,

V<sub>soil retention</sub> refers to soil retention value of city green space, in 10,000 Yuan/year;

Q<sub>soil retention i</sub>refers to the quantity of soil fixed by Type i city green space, in ton/year;

 $\rho_i$  refers to soil bulk density of Type i city green space, in ton/m<sup>3</sup>, source from Department of Forestry of Guangxi Zhuang Autonomous Region;

Cearthwork refers to cost on excavation and transportation of earthwork per unit volume, in Yuan/m<sup>3</sup>;

n refers to the number of city green space.

And

$$Q_{\text{soil retention}} = R \cdot K \cdot LS \cdot (1 - C \cdot P)$$

In the formula: R is rainfall erosion factor; K is soil erodibility factor; LS is slope length factor; C is vegetation cover factor; P is soil and water conservation measure factor.  $Q_{\text{soil retention}}$  is the total soil retention quantity of city green space.

# (7) Water conservation value

The water conservation value of city green space refers mainly to the function that city green space intercepts, absorbs and stores rainfall and converts surface water into surface runoff or groundwater.

#### 1 Water conservation value

The water conservation value is calculated with shadow project method, that is, the measurement of water conservation value of city green space is converted into the measurement of reservoir (the shadow project) construction cost. The calculation formula is:

$$V_{\text{water conservation}} = Q_{\text{water regulation}} \times C_{\text{reservoir}} \times 10^{-4}$$

Where,

Vwater conservation refers to the value of water conservation of city green space, in 10,000 Yuan/year;

Qwater regulation refers to the quantity of water regulated by city green space, in m3/year;

Creservoir refers to cost on construction of reservoir capacity, in Yuan/m<sup>3</sup>;

 $10^{-4}$  is unit conversion coefficient.

And

$$Q_{water regulation} = 10 \times S(P_{precipitation} - E - R)$$

Where,

S refers to the area of city green space, in hectare;

Pprecipitation refers to precipitation in city green space, in mm/year;

E refers to evapotranspiration in city green space, in mm/year;

Rrefers to surface runoff in city green space, in mm/year;

As city green space is mainly featured by broad-leaved forest, if built-up areas are provided with

special monitoring data on broad-leaved forest, it is recommended to use such special data on precipitation, evapotranspiration and surface runoff. If there is no relevant local data, reference can be made to precipitation, evapotranspiration and surface runoff in broad-leaved forest in Forest Ecosystem Services Valuation of the *Guidelines*;

10 is unit conversion coefficient.

# (8) Value of temperature regulation

The value of temperature regulation is calculated by replacement cost method, based on the heat absorption by water surface evaporation, equivalent to calculating by the value of air conditioning refrigeration power. The calculation formula is:

 $V_{\text{temperature regulation}} = \frac{S_{\text{water surface}} \times P_{\text{electricity price}} \times E \times \gamma}{\omega} \times 10^{-3}$ 

Where,

V<sub>temperature regulation</sub> refers to the value of temperature regulation, in 10,000 Yuan/year;

 $S_{\text{water surface}}$  refers to the area of urban water surface, in hectare, sourced from the Department of Land and Resources of Guangxi Zhuang Autonomous Region;

Pelectricity price refers to electricity price, in Yuan/kW.h;

*E* refers to the annual average evaporation capacity from water surface, in mm/year/hectare, based on the monitoring results from Meteorological Service of Guangxi in recent 30 years;

 $\gamma$  refers to evaporation heat of water, in KJ/kg. As temperature goes up, the evaporation heat will be smaller and smaller, so  $\gamma$  is equal to 2260kJ/kg of 100 °C water under standard atmospheric pressure;

 $\omega$  refers to the ratio of air conditioning efficiency. Temperature decrease due to evaporation is calculated with the refrigeration consumption of air conditioning. The ratio of air conditioning efficiency is equal to 3.0;

10<sup>-3</sup>refers to unit conversion coefficient.

# (9) Maintaining biodiversity value

The maintaining biodiversity of city ecosystem is calculated with opportunity cost approach. The calculation formula is:

$$V_{biodiversity} = S_{green space} \times V_{unit biodiversity} \times 10^{-4}$$

Where,

V<sub>biodiversity</sub> refers to biodiversity value, in 10,000 Yuan/year;

S<sub>green space</sub>refers to the area of green space, in hectare;

 $V_{unit biodiversity}$  refers to biodiversity value per unit area, in Yuan/· year. As city green space is mainly featured by broad-leaved forest, if built-up areas are provided with special monitoring data on broad-leaved forest, it is recommended to use such special data. If there is no relevant local data, reference can be made to biodiversity value per unit area of broad-leaved forest in Forest Ecosystem Services Valuation of the *Guidelines*;

 $10^{-4}$  is unit conversion coefficient.

# (10) Value of Recreational services

The value of city park tourism is the emphasis of tourism service valuation and is calculated by expense analysis method. The value of city public park tourism is evaluated by incomes from city park tourism. The calculation formula is:

$$V_{\text{park}} = \sum_{i=1}^{n} R_{\text{park}\,i} + C_{\text{transportation}\,i}$$

Where,

 $V_{\text{park}}$  refers to the value of city park tourism, in 10,000 Yuan/year;

 $R_{\text{park }i}$  refers to the total operating revenue from Type i city park, in 10,000 Yuan/year, based on the statistical data from the national scenic spot management system by the Tourism Development Committee of Guangxi Zhuang Autonomous Region;

 $C_{\text{transportation }i}$  refers to the transportation expenses of tourists who travel to Type i Grade A city park in Guangxi, in 10,000 Yuan/year, based on the statistical data from domestic tourist sampling survey by the Tourism Development Committee of Guangxi Zhuang Autonomous Region;

nrefers to the number of Grade A city park in Guangxi.

# 6.5 Accounts for Urban Ecosystem

# Table 6-3 Urban Ecosystem Extent Account (Unit: Hectare)

|                    | Urban green space<br>type 1 | Urban green space<br>type 2 | <br>Total |
|--------------------|-----------------------------|-----------------------------|-----------|
| Opening stock      |                             |                             |           |
| Additions to stock |                             |                             |           |
| Reduction in stock |                             |                             |           |
| Closing stock      |                             |                             |           |

| Table 6-4 | Urban | Ecosystem | Condition   | Account |
|-----------|-------|-----------|-------------|---------|
|           | C 1 0 |           | 00114111011 |         |

|                                  |         | Urban green<br>space type 1 | Urban green<br>space type 2 |  |
|----------------------------------|---------|-----------------------------|-----------------------------|--|
| Net productivity per unit        | Opening |                             |                             |  |
| $(t \cdot hm^{-2} \cdot a^{-1})$ | Closing |                             |                             |  |
| Anion concentration of forest    | Opening |                             |                             |  |
| (piece · cm <sup>-3</sup> )      | Closing |                             |                             |  |
| Average tree height(m)           | Opening |                             |                             |  |
|                                  | Closing |                             |                             |  |
| Annual water surface             | Opening |                             |                             |  |
| evaporation(mm)                  | Closing |                             |                             |  |
| Annual precipitation(mm)         | Opening |                             |                             |  |
|                                  | Closing |                             |                             |  |

|                                            |         | Urban green<br>space type 1 | Urban green<br>space type 2 |  |
|--------------------------------------------|---------|-----------------------------|-----------------------------|--|
| Sulfur dioxide uptake per unit             | Opening |                             |                             |  |
| $(kg \cdot hm^{-2} \cdot a^{-1})$          | Closing |                             |                             |  |
| Fluoride uptake per unit                   | Opening |                             |                             |  |
| (kg·hm <sup>-2</sup> ·a <sup>-1</sup> )    | Closing |                             |                             |  |
| Nitrogen oxides uptake per unit            | Opening |                             |                             |  |
| (kg·hm <sup>-2</sup> ·a <sup>-1</sup> )    | Closing |                             |                             |  |
| Annual dust retention quantity per unit    | Opening |                             |                             |  |
| (kg·hm <sup>-2</sup> ·a <sup>-1</sup> )    | Closing |                             |                             |  |
| Evapotranspiration rate                    | Opening |                             |                             |  |
|                                            | Closing |                             |                             |  |
| Runoff rate                                | Opening |                             |                             |  |
|                                            | Closing |                             |                             |  |
| Forest soil erosion modulus                | Opening |                             |                             |  |
| $(t \cdot hm^{-2} \cdot a^{-1})$           | Closing |                             |                             |  |
| Erosion modulus of uncovered<br>bare land  | Opening |                             |                             |  |
| $(t \cdot hm^{-2} \cdot a^{-1})$           | Closing |                             |                             |  |
| Volume weight of soil( $g \cdot cm^{-3}$ ) | Opening |                             |                             |  |
|                                            | Closing |                             |                             |  |
| Shannon-Wiener index                       | Opening |                             |                             |  |
|                                            | Closing |                             |                             |  |

# Table 6-5 Physical Account for Urban Ecosystem

| Type of services    |                                  | Urban<br>green<br>space type<br>1 | Urban green<br>space type 2 | <br>Total |
|---------------------|----------------------------------|-----------------------------------|-----------------------------|-----------|
| Regulating services | Carbon sequestration(ton)        |                                   |                             |           |
|                     | Absorbing sulfur<br>dioxide(ton) |                                   |                             |           |

|                   | Type of services                  | Urban<br>green<br>space type<br>1 | Urban green<br>space type 2 | <br>Total |
|-------------------|-----------------------------------|-----------------------------------|-----------------------------|-----------|
|                   | Absorbing fluoride(ton)           |                                   |                             |           |
|                   | Absorbing nitrogen<br>oxides(ton) |                                   |                             |           |
|                   | Dust retention (ton)              |                                   |                             |           |
|                   | Soil retention (ton)              |                                   |                             |           |
|                   | Conserving water resources (ton)  |                                   |                             |           |
|                   | Regulating temperature<br>(kJ)    |                                   |                             |           |
| Cultural services | Recreational services             |                                   |                             |           |

 Table 6-6 Monetary Account for Urban Ecosystem (Unit: RMB 10,000)

| Type of services       |                                  |         | Urban green<br>space type 1 | Urban green<br>space type 2 | <br>Total |
|------------------------|----------------------------------|---------|-----------------------------|-----------------------------|-----------|
| Regulating<br>services | Carbon sequestration             | Opening |                             |                             |           |
|                        | Absorbing sulfur dioxide         | Opening |                             |                             |           |
|                        | Absorbing fluoride               | Opening |                             |                             |           |
|                        | Absorbing<br>nitrogen<br>oxides  | Opening |                             |                             |           |
|                        | Dust retention                   | Opening |                             |                             |           |
|                        | Soil retention                   | Opening |                             |                             |           |
|                        | Conserving<br>water<br>resources | Opening |                             |                             |           |
|                        | Regulating<br>temperature        | Opening |                             |                             |           |

| Туре              | of services          |         | Urban green<br>space type 1 | Urban green<br>space type 2 | <br>Total |
|-------------------|----------------------|---------|-----------------------------|-----------------------------|-----------|
|                   | Species<br>diversity | Opening |                             |                             |           |
| Cultural services | Urban tourism        | Opening |                             |                             |           |

# **Chapter 7 Valuation of Marine Ecosystem Services**

# 7.1 Valuation Scope

The valuation scope of marine ecosystem includes two categories: the sea areas managed by Guangxi (i.e. the area of marine functional zone) and mangrove forests.

| Classification<br>code | Land use<br>type    | Remark                                                                                               |
|------------------------|---------------------|------------------------------------------------------------------------------------------------------|
| 1105                   | Coastal<br>beaches  | Including coral reef, seagrass bed, coastal beaches, uninhabited islands, other coastal waters, etc. |
| 0303                   | Mangrove<br>forests | It refers to the coastal forest land that grows mangroves.                                           |

Table 1-6 Corresponding Land Use Classification Scope of Marine Ecosystem

# 7.2 Valuation Indicators System

The valuation indicators system of marine ecosystem services is divided into three levels according to the degree of marketization, and it consists of 3 first-level indicators, 7 second-level indicators and 12 third-level indicators.

| First-level<br>indicators | Second-level<br>indicators               | Third-level indicators                                         | Content            |
|---------------------------|------------------------------------------|----------------------------------------------------------------|--------------------|
| Provisioning<br>services  | Provisioning food and<br>raw materials   | Marine products                                                | Physical, Monetary |
|                           | Comprehensive<br>utilization of seawater | Comprehensive annual<br>(quarterly) utilization of<br>seawater | Monetary           |
|                           | Ocean energy                             | Ocean wind power generation                                    | Monetary           |
|                           |                                          | Ocean tidal power<br>generation                                | Monetary           |

Table 7-1 Valuation Indicators System of Marine Ecosystem Services in Guangxi

| First-level<br>indicators | Second-level<br>indicators                 | Third-level indicators                    | Content            |
|---------------------------|--------------------------------------------|-------------------------------------------|--------------------|
|                           |                                            | Other marine power generation             | Monetary           |
|                           | Carbon sequestration<br>and oxygen release | Carbon sequestration                      | Physical, Monetary |
| Regulating                |                                            | Inorganic nitrogen<br>purification        | Physical, Monetary |
|                           | Pollution degradation<br>treatment         | Active phosphate<br>purification          | Physical, Monetary |
|                           |                                            | Chemical oxygen demand<br>(COD) treatment | Monetary           |
|                           |                                            | Petroleum disposal                        | Monetary           |
|                           | Protection of<br>biodiversity              | Biodiversity                              | Monetary           |
| Cultural services         | Recreational services                      | Marine tourism                            | Physical, Monetary |

# 7.3 Physical Quantity Monetary methods for Marine Ecosystem Services

# (1) Marine Products

The calculation formula is:

$$Q_{\text{products}} = \sum_{i=1}^{n} Q_i$$

In the formula:

 $Q_{\text{products}}$  is the total amount of marine products, unit: 10,000 tons/year;

Q<sub>i</sub> is the yield of type i marine product, unit: 10,000 tons/year;

n is the number of marine products types.

# (2) Carbon Sequestration

The calculation formula is:

$$Q_{\text{carbon sequestration}} = \sum_{i=1}^{n} R_{\text{carbon sequestration rate } i} \times S_{\text{system } i}$$

In the formula:

Q<sub>carbon sequestration</sub> is the carbon sequestration of ocean, unit: tons/year;

n is the number of marine ecosystem types;

Q<sub>carbon sequestrationi</sub> is the amount of carbon sequestration of type i marine ecosystem, unit: tons/year;

 $R_{carbon sequestration rate i}$  is the carbon sequestration rate of type i marine ecosystem per unit area, unit: ton/square kilometer;

S<sub>system i</sub> is the area of type i marine ecosystem, unit: square kilometer.

#### (3) Inorganic Nitrogen Purification

The calculation formula is:

$$Q_{inorganic nitrogen} = Q_{Carbon sequestration} \times 16/106$$

In the formula:

Q<sub>inorganic nitrogen</sub> is the inorganic nitrogen purification amount, unit: tons/year;

Q<sub>Carbon sequestration</sub> is the carbon sequestration amount of ocean, unit: tons/year;

16/106 is obtained according to the rule that the nutritive salt uptake of phytoplanktons generally follows the Redfield ratio (C:N:P=106:16:1).

# (4) Active Phosphate Purification

The calculation formula is:

$$Q_{\text{phosphate}} = Q_{\text{carbon sequestration}} \times 16/106$$

In the formula:

Q<sub>phosphate</sub> is the phosphate purification amount, unit: tons/year;

Q<sub>phosphate</sub> is the carbon sequestration of ocean, unit: tons/year;

16/106 is obtained according to the rule that the nutritive salt uptake of phytoplanktons generally follows the Redfield ratio (C:N:P=106:16:1).

#### (5) Recreational services

The physical accounting method is using the statistical data of the number of tourists in the Marine

scenic spots obtained by the tourism department.

## 7.4 Monetary methods

# (1) Value of food and raw materials provisioning

Assessment of direct economic value takes mainly account of food and raw materials provisioning, by adding the value of food provisioning (marine aquatic products) and the value of raw materials provisioning together.

#### (1) Value of food provisioning

a) Value of aquatic products subject to mariculture

The output of aquatic products subject to mariculture is calculated based on the annual output of five main categories of aquatic products subject to mariculture in Beibu Gulf, such as fish, crustacean, shellfish, alga and others, and the average market price of aquatic products subject to mariculture is calculated based on the wholesale price of similar marine products in marine products wholesale market near Beibu Gulf. The value of mariculture production is calculated with market price approach and the calculation formula is:

$$V_{\text{mariculture}} = \sum_{i=1}^{n} (Q_{\text{mariculture }i} \times P_{\text{mariculture }i}) \times 10^{-4}$$

Where,

 $Q_{\text{mariculture }i}$  refers to the output of Type i aquatic products subject to mariculture, in ton/year, based on *China Fishery Statistical Yearbook*;

 $P_{\text{mariculture }i}$  refers to the unit resource rent of Type i aquatic products subject to mariculture, in Yuan/kg, based on statistics of Department of Aquaculture, Animal Husbandry and Veterinary Services of Guangxi Autonomous Region;

n refers to the number of types of aquatic products subject to marine fishing. According to current statistical data, aquatic products subject to mariculture are composed of five categories, such as fish, crustacean, shellfish, alga and others, so n is equal to 5;

 $10^{-1}$  is unit conversion coefficient.

b) Value of aquatic products subject to marine fishing

The output of aquatic products subject to marine fishing is calculated based on the annual output of six main categories of aquatic products subject to marine fishing in Beibu Gulf, such as fish, crustacean, shellfish, alga, cephalopod and others, and the average market value of aquatic products subject to marine fishing is calculated based on the wholesale price of similar marine products in marine products whole sale market near Beibu Gulf. The value of marine fishing production is calculated with market price approach and the calculation formula is:

$$V_{\text{fishing}} = \sum_{i=1}^{n} (Q_{\text{fishing } i} \times P_{\text{fishing } i}) \times 10^{-1}$$

Where,

 $Q_{\text{fishing }i}$  refers to the output of Type i aquatic products subject to marine fishing, in ton/year, based

#### on China Fishery Statistical Yearbook;

 $P_{\text{fishing }i}$  refers to the unit resource rent of Type i aquatic products subject to marine fishing, in Yuan/kg, based on statistics of Department of Aquaculture, Animal Husbandry and Veterinary Services of Guangxi Autonomous Region;

n refers to the number of types of aquatic products subject to marine fishing. According to current statistical data, aquatic products subject to marine fishing are composed of six categories, such as fish, crustacean, shellfish, alga, cephalopod and others, so n is equal to 6;

 $10^{-1}$  is unit conversion coefficient.

# **(2)** Value of raw material supply

Raw material supply includes chemical materials, medicine materials and decorative materials supplied indirectly for human production and life. Although there are rich oil and gas resources and seabed mineral reserves in Beibu Gulf, they belong to non-renewable resources, and thus they cannot be included in raw material supply for marine ecosystem. Raw material supply for offshore marine ecosystem in Guangxi is mainly reflected in three aspects: sea salt production, pearl production and marine life medicine.

a) Sea salt production

Sea salt production value is calculated with market price approach. The calculation formula is:

$$V_{\text{sea salt}} = Q_{\text{sea salt}} \times P_{\text{sea salt}}$$

Where,

 $V_{\text{sea salt}}$  refers to the value of sea salt production, in 10,000 Yuan/year;

 $Q_{\text{sea salt}}$  refers to the output of sea salt, in 10,000 tons/year, based on *China Marine Statistical Yearbook*;

 $P_{\text{sea salt}}$  refers to the unit resource rent of sea salt approved by the nation, in Yuan/ton. See the appendix for data source.

b) Pearl production

The production value of sea pearl is calculated by market price approach. The calculation formula is:

$$V_{\text{pearl}} = Q_{\text{pearl}} \times P_{\text{pearl}} \times 10^{-1}$$

Where,

 $V_{\text{pearl}}$  refers to the production value of sea pearl, in 10,000 Yuan/year;

 $Q_{\text{pearl}}$  refers to the output of sea pearl, in Kg/year, based on China Fisheries Yearbook;

 $P_{\text{pearl}}$  refers to the unit resource rent of sea pearl, in Yuan/g, based on the statistical data from Department of Aquatic Animal Husbandry and Veterinary Bureau of Guangxi Zhuang Autonomous Region;

 $10^{-1}$  refers to unit conversion coefficient.

c) Marine biological medicine

The value of marine biological medicine is calculated by market price approach. The calculation formula is:

$$V_{\rm medicine} = Q_{\rm medicine} \times P_{\rm medicine} \times 10^6$$

Where:

V<sub>medicine</sub> refers to the value of marine biological medicine, in 10,000 Yuan/year;

 $Q_{\text{medicine}}$  refers to the output of marine biological medicine products, in 10,000 tons/year, based on China Marine Statistical Yearbook;

 $P_{\text{medicine}}$  refers to the unit resource rent of marine biological medicine products, in Yuan/g, based on statistical data from the Oceanic Administration of Guangxi;

10<sup>6</sup>refers to unit conversion coefficient.

#### (2) Carbon sequestration

Carbon sequestration value is generated by adding the Carbon sequestration values of five ecosystems except uninhabited island. The calculation formula is:

$$V_{\text{Carbon sequestration}} = \sum_{i=1}^{n} V_{\text{Carbon sequestration } i}$$

Where,

 $V_{\text{Carbon sequestration}}$  refers to the value of Carbon sequestration, in 10,000 Yuan/year;

 $V_{\text{Carbon sequestration }i}$  refers to the value of the Type I Carbon sequestration in marine ecosystem, in 10,000 Yuan/year;

n refers to the number of marine ecosystem types, currently including such five types as coral reef, mangrove forest, seagrass bed, uninhabited island (not yet evaluated due to lack of monitoring data) and other offshore areas, and equals to 4.

The Carbon sequestration value of each marine ecosystem will be calculated by payment for ecosystem services method. The calculation formula is:

 $V_{\text{Carbon sequestration }i} = Q_{\text{Carbon sequestration }i} \times T_c \times 10^{-4}$ 

Where,

 $Q_{\text{Carbon sequestration}i}$  refers to Carbon sequestration amount of the Type i marine ecosystem, in ton/year;

 $T_c$  refers to carbon market trading price, in Yuan/ton;

 $10^{-4}$  refers to unit conversion coefficient.

The calculation formula for Carbon sequestration amount of each marine ecosystem is:

 $Q_{Carbon \ sequestrationi} = Q_{Carbon \ sequestrationratei} \times S_{system \ i}$ 

Where

 $Q_{\text{Carbon sequestration ratei}}$  refers to the Carbon sequestration rate of Type i marine ecosystem, in ton/km·year, based on the measured data from the Oceanic Administration of Guangxi;

 $S_{\text{system }i}$  refers to the area of Type i marine ecosystem, in km<sup>2</sup>, based on the statistical data from the Oceanic Administration of Guangxi.

#### (3) Value of inorganic nitrogen purification

The value of inorganic nitrogen purification is calculated by expense analysis method. The calculation formula is:

$$V_{\text{inorganic nitrogen}} = Q_{\text{inorganic nitrogen}} \times C_{\text{domestic sewage}} \times 10^{-1}$$

Where,

Vinorganic nitrogen refers to the value of inorganic nitrogen purification, in 10,000 Yuan/year;

 $Q_{\text{inorganic nitrogen}}$  refers to the amount of inorganic nitrogen purification, in ton/year;

 $C_{\text{domestic sewage}}$  refers to the cost for domestic sewage treatment, in Yuan/kg, based on the statistical data from Price Bureau of Guangxi;

 $10^{-1}$  refers to unit conversion coefficient.

Inorganic nitrogen purification takes the amount of Carbon sequestration to estimate the N absorption by phytoplankton. The calculation formula is:

$$Q_{\text{inorganic nitrogen}} = Q_{\text{Carbon sequestration}} \times 16/106$$

Where,

 $Q_{\text{Carbon sequestration}}$  refers to the amount of marine Carbon sequestration, in ton/year;

16/106 refers to the absorption of nutritive salt by phytoplankton, which is produced based on Redfield ratio in general (C:N:P=106:16:1).

## (4) Value of reactive phosphate purification

The value of reactive phosphate purification is calculated by expense analysis method. The calculation formula is:

$$V_{\rm phosphate} = Q_{\rm phosphate} \times C_{\rm domestic \, sewage} \times 10^{-1}$$

Where,

 $V_{\text{phosphate}}$  refers to the value of reactive phosphate purification, in 10,000 Yuan/year;

 $Q_{\text{phosphate}}$  refers to the amount of phosphate purification, in ton/year;

 $10^{-1}$  refers to unit conversion coefficient.

The amount of reactive phosphate purification takes the amount of Carbon sequestration to estimate P absorption by phytoplankton. The calculation formula is:

$$Q_{\rm phosphate} = Q_{\rm Carbon \, sequestration} \times 16/106$$

Where,

 $Q_{\text{Carbon sequestration}}$  refers to the amount of marineCarbon sequestration, in ton/year;

16/106 refers to the absorption of nutritive salt by phytoplankton, which is produced based on Redfield ratio in general (C:N:P=106:16:1).

## (5) Value of chemical oxygen demand (COD) treatment

The value of COD treatment is calculated by expense analysis method. The calculation formula is:

$$V_{COD} = Q_{COD} / 1 \times C_{COD} \times 10^{-2}$$

Where,

 $V_{COD}$  refers to the value of COD treatment, in 10,000 Yuan/year;

 $Q_{COD}$  refers to the COD discharged into the ocean each year, in ton/year, based on the monitoring data from Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

C<sub>COD</sub> refers to the costs for per unit COD pollutional equivalent treatment, in Yuan/kg;

Irefers to COD pollution equivalent value, in kg It is specified in Administrative Regulations on Levy and Use of Pollutant Discharge Fee (No. 369 of Decree of the State Council) that COD pollution equivalent value should be 1;

 $10^{-1}$  refers to unit conversion coefficient.

#### (6) Value of oil disposal

The value of oil disposal is calculated by expense analysis method. The calculation formula is:

$$V_{\text{petroleum}} = C_{\text{industrial wastewater}} \times Q_{\text{petroleum}} \times 10^{-1}$$

Where,

V<sub>petroleum</sub>refers to the value of oil disposal, in 10,000 Yuan/year;

 $C_{\text{industrial wastewater}}$  refers to the costs for industrial wastewater treatment, in Yuan/kg, based on the statistical data from the Price Bureau of Guangxi;

 $Q_{\text{petroleum}}$  refers to the amount of petroleum pollutants discharged into the ocean each year, in ton/year, based on the monitoring data from Department of Environmental Protection of Guangxi Zhuang Autonomous Region;

 $10^{-1}$  refers to unit conversion coefficient.

# (7) Value of biodiversity maintenance

The value of biodiversity maintenance is produced by adding the that value of four ecosystems except the uninhabited island. The calculation formula is:

$$V_B = \sum_{i=1}^n V_{Bi}$$

Where,

 $V_B$  refers to the value of marine biodiversity maintenance, in 10,000 Yuan/year;

 $V_{Bi}$  refers to the value of biodiversity of Type i marine ecosystem, in 10,000 Yuan/year;

*n*refers to the number of marine ecosystem types, currently including such five types as coral reef, mangrove forest, seagrass bed, uninhabited island (not yet evaluated due to lack of monitoring data) and other offshore areas, and equals to 4.

The biodiversity value of each marine ecosystem is calculated by benefit transfer method. The calculation formula is:

# $V_{Bi} = S_{\text{system } i} \times V_{Bi \text{ per unit area}}$

Where,

 $S_{\text{system }i}$  the area of Type i marine ecosystem, in km<sup>2</sup>, based on the statistical data from the Ocean Administration of Guangxi;

 $V_{Bi per unit area}$  refers to the biodiversity value per unit area of each marine ecosystem, in 10,000 Yuan/km.year, and equals to the default value as described in the Appendix.

#### (8) Recreational services value

Recreational services mainly focuses on marine tourism value, which is calculated by expense analysis method. The calculation formula is:

$$V_{\text{tourism}} = \sum_{i=1}^{n} R_{\text{scenic spot } i} + C_{\text{transportation} i}$$

Where,

V<sub>tourism</sub> refers to marine tourism value, in 10,000 Yuan/year;

 $R_{\text{scenic spot }i}$  refers to the total operating revenue of the i<sup>th</sup> A-Grade marine scenic spot, in 10,000 Yuan/year, based on the statistical data from the national scenic spot management system by the Tourism Development Committee of Guangxi Zhuang Autonomous Region;

 $C_{\text{transportation }i}$  refers to the transportation expenses of tourists who travel to the A-Grade marine scenic spot, in 10,000 Yuan/year, based on the statistical data from domestic tourist sampling survey by the Tourism Development Committee of Guangxi Zhuang Autonomous Region;

*n*refers to the number of A-Grade marine scenic spots, based on the statistical data from the national scenic spot management system by the Tourism Development Committee of Guangxi Zhuang Autonomous Region.

#### 7.5 Accounts for Marine Ecosystem

#### Table 7-3 Marine Ecosystem Extent Account (Unit: Hectare)

|                    | Mangroves | Seagrass Bed | Coral Reef | Other Sea Areas | Total |
|--------------------|-----------|--------------|------------|-----------------|-------|
| Opening Stock      |           |              |            |                 |       |
| Additions to stock |           |              |            |                 |       |
| Reduction in stock |           |              |            |                 |       |
| Closing stock      |           |              |            |                 |       |

#### **Table 7-4 Marine Ecosystem Condition Account**

|                                                     |         | Mangroves | Seagrass<br>bed | Coral<br>reef | Other sea<br>areas |
|-----------------------------------------------------|---------|-----------|-----------------|---------------|--------------------|
| Carbon sequestration rate                           | Opening |           |                 |               |                    |
| per unit area(t·km <sup>-2</sup> ·a <sup>-1</sup> ) | Closing |           |                 |               |                    |
| Nitrogen content per unit                           | Opening |           |                 |               |                    |
| area (g/m <sup>3</sup> )                            | Closing |           |                 |               |                    |
| Phosphorus content per                              | Opening |           |                 |               |                    |
| unit area (g/m <sup>3</sup> )                       | Closing |           |                 |               |                    |
| Silicon content per                                 | Opening |           |                 |               |                    |
| unit area (g/m <sup>3</sup> )                       | Closing |           |                 |               |                    |
| Inorganic nitrogen volume                           | Opening |           |                 |               |                    |
| into the sea (t)                                    | Closing |           |                 |               |                    |
| Active phosphoric acid                              | Opening |           |                 |               |                    |
| volume into the sea (t)                             | Closing |           |                 |               |                    |
| Marine chemical oxygen                              | Opening |           |                 |               |                    |
| demand volume into the sea<br>(t)                   | Closing |           |                 |               |                    |
| Petroleum pollutants                                | Opening |           |                 |               |                    |
| volume into the sea (t)                             | Closing |           |                 |               |                    |
| Value of biodiversity                               | Opening |           |                 |               |                    |
| (RMB 10,000 /km <sup>2</sup> ·a <sup>-1</sup> )     | Closing |           |                 |               |                    |

# Table 7-5 Physical Account for Marine Ecosystem Services

| Туре                     | e of services   | Mangroves | Seagrass<br>bed | Coral<br>reef | Other sea<br>areas | Total |
|--------------------------|-----------------|-----------|-----------------|---------------|--------------------|-------|
| Provisioning<br>services | Marine products |           |                 |               |                    |       |

| Туре       | e of services      | Mangroves | Seagrass<br>bed | Coral<br>reef | Other sea<br>areas | Total |
|------------|--------------------|-----------|-----------------|---------------|--------------------|-------|
|            | Carbon             |           |                 |               |                    |       |
|            | sequestration      |           |                 |               |                    |       |
| Regulating | Inorganic nitrogen |           |                 |               |                    |       |
| services   | purification       |           |                 |               |                    |       |
|            | Active phosphate   |           |                 |               |                    |       |
|            | purification       |           |                 |               |                    |       |
| Cultural   | Recreational       |           |                 |               |                    |       |
| services   | services           |           |                 |               |                    |       |

 Table 7-6 Monetary Account for Marine Ecosystem Services (Unit: RMB 10,000)

| Type of services         |                                                    | Mangroves | Seagrass<br>bed | Coral<br>reef | Other sea<br>areas | Total |
|--------------------------|----------------------------------------------------|-----------|-----------------|---------------|--------------------|-------|
| Provisioning<br>services | Value of marine products                           |           |                 |               |                    |       |
|                          | Value of carbon sequestration                      |           |                 |               |                    |       |
| Regulating services      | Value of inorganic nitrogen<br>purification        |           |                 |               |                    |       |
|                          | Value of active phosphate purification             |           |                 |               |                    |       |
|                          | Value of Chemical oxygen<br>demand (COD) treatment |           |                 |               |                    |       |
|                          | Value of petroleum disposal                        |           |                 |               |                    |       |
|                          | Value of biodiversity                              |           |                 |               |                    |       |
| Cultural services        | Recreational services                              |           |                 |               |                    |       |

# Chapter 8 Mainstreaming case study: Research on Ecological Compensation Standards for the Xijiang River Basin in Guangxi Based on Scenario Analysis

#### 8.1 Background

In May 2016, the General Office of the State Council issued the *Opinions on Improving the Compensation Mechanism for Ecological Protection*, clarifying that by 2020, the diversified compensation mechanism shall be initially established, and an ecological protection compensation system befitting China's national conditions shall be basically established. In December 2016, the Ministry of Finance joined by three other departments jointly issued the *Guiding Opinions on Accelerating the Establishment of a Compensation Mechanism for Horizontal Ecological Protection of the Upstream and Downstream Basins (Opinions)*. The *Opinions* proposes that by 2020, a horizontal ecological protection compensation mechanism will be initially established in cross-provincial river basins that have important drinking water functions and ecological service values, with clear beneficiaries and a strong upstream and downstream compensation wish. For this end, a number of pilot projects will be built to explore the feasibility. The report of the 19<sup>th</sup> National Congress expressly stated to "perfect the recuperation system of cultivated land, prairies, forests, rivers and lakes and establish a market-oriented and diversified ecological compensation mechanism."



#### Fig. 8-1 Xijiang River Basin

Xijiang River is located in the upper reaches of the Pearl River Basin and is also the main stream of the Pearl River. It originates from the Maxiong Mountain of the Wumeng Mountain Range, Qujing City, Yunnan Province. Flowing through Guizhou and Guangxi, the 2074.8 kilometers long river meets with Beijiang River in Sanshui District, Foshan City, Guangdong Province. It has a drainage area of 355,000 square kilometers, of which 204,900 square kilometers is in Guangxi Zhuang Autonomous Region, accounting for 57.7% of the entire Xijiang River Basin. To protect the downstream water quality and quantity, the upstream region has made tremendous contributions and sacrifices. Take Guangxi as an example, Guangxi has invested large amounts of manpower, material and financial resources to protect and repair the ecological environment, including investment in water conservation, soil erosion and industrial pollution control, giving up part of its rights to develop economically and socially.

In order to advance work on ecological compensation in the Xijiang River Basin in Guangxi, improve the ecological environment and ensure a coordinated economic and social development of the upper reaches of the basin (Guangxi) and downstream (Guangdong), it is necessary to provide decision support for the basin eco-environment protection based on scenario analysis-oriented research on the ecological compensation standards of the Xijiang River Basin in Guangxi.

# 8.2 Objective

The Pearl River system that belongs to the Xijiang River Basin is the third largest water system in China. It enjoys a unique ecological environment and unparalleled ecological value, positioning high in China's ecological security. Affected by the values of natural resources, the traditional national economic accounting system does not consider natural resources as cost input and consumption nor does it consider the cost that has to be paid when the environment is damaged. The ecosystem's contribution to economic activities has not been included in the national economic accounting system. This research explores the impact of land use change on the value of ecosystem services under different scenarios by setting changes in land use patterns under different policy environments. From the perspective of ecological building costs and ecological benefits, the paper proposed an ecological compensation standard for the Guangxi Xijiang River Basin in combination with natural geography and social-economic factors. It provides a scientific basis for the formulation of scientific and rational ecological benefit compensation policies for Guangxi and even the whole country. It also lays a foundation for innovative ecological protection mechanisms.

#### 8.3 Contents

Changes in land use/coverage must result in changes in the functionality of their original ecosystem services. Based on the accounting of the value of ecosystem services under the current land use/coverage status and combined with different economic and social development scenarios and scenarios of ecological compensation policy selection, the research analyzes and forecasts the ecosystem services effect and values caused by changes in land use/coverage under different policy

scenarios. With this as basis, establish the ecological compensation framework and standard for the Guangxi Xijiang River Basin.

The research focuses on the following:

# (1) Basic research on the current status of land use and research on existing ecological environmental policy

a) Based on data of the status quo of land use in the Xijiang River Basin, combined with data collected from the region by various departments on environmental monitoring, remote sensing, resource survey, long-term meteorological observation as well as on important species, soil, vegetation, land use and socio-economic indicators, the research establishes six major ecosystem databases - freshwater, farmland, forest, ocean, grassland and city.

b) Investigate and collect land use-oriented policies related to eco-environmental, agricultural, forestry and economic and social development in the Xijiang River Basin. The paper also does supplementary collection of data on soil, climate, hydrology, population, agricultural statistics and socio-economic statistics of the region, serving as a basis for comparison of the current effects of different land use policies.

c) Model the land use change of the Xijiang River Basin from 2000 to 2015, analyzing the temporal and spatial pattern change traits of the Xijiang River Basin, clarifying the relationship between land use types and driving factors.

# (2) Scenario-based research on estimation of ecosystem service functions

Scenario analysis is an effective tool to explore risks in existing policy selection. Scenario analysis considers a variety of influencing factors and provides decision-making departments with a more comprehensive and meaningful scientific reference basis from different ways. Since land use change/coverage is highly correlated with the performance of ecosystem services, this research plans to compare and analyze three land use change scenarios. Based on the scenario of 2015, the spatial dynamics of land use change in Guangxi in 2015-2030 is simulated according to the three policy scenarios - as usual, planning and policy optimization. Following this, ecosystem model is used to calculate ecosystem services beneficial to the lower reaches of the Xijiang River Basin (Guangdong), such as changes of water/soil/ biodiversity conservation, flood control and carbon sequestration, then prepare ecosystem service accounts for the Xijiang River Basin under different land use change scenarios.

a) As usual scenario: Based on the scenario of 2015, the trend under the basic scenario will continue into the future. When forecasting the baseline scenario, assume that the trend of land use change over the past 15years (2000-2015) has continued and explore changes in the value of ecosystem services over the next 15 years (2015-2030). With the scenario set, it is possible to provide a benchmark for comparison for the future effects of land use policies.

b) Planning scenario: Planning scenario consider existing development and environmental
management plans for all management departments, including major ecosystem planning and land use planning, such as forestry development planning and overall land use planning. Similarly, the economic growth planning of various sectors, some potential ecological protection and the balance of interests of economic growth are also considered.

c) Policy optimization scenario: The development goals of the ecological management and protection sectors such as environmental protection, agriculture, and forestry are realized, and at the same time, the expansion needs of economic and social development are considered, accomplishing the goal to optimize ecosystem service supply. The basis of this scenario is to ensure the sustainable acquisition of ecosystem services under existing management strategies.

## (3) Research on calculation of ecological compensation standards

In view of the above scenarios, the calculation of the management cost of the ecosystem in the upstream area mainly includes pollution control costs (in life pollution/aquaculture pollution/plantation pollution), ecological protection projects (water/water source conservation/integrated treatment of rivers, water/soil restoration cost, environmental supervision capacity building). Combined with the results of ecosystem accounts, an ecological compensation framework system is prepared to calculate the ecological compensation standards between the upper and lower reaches of the Xijiang River Basin, which provides decision-making support for the ecological environment protection for the Xijiang River Basin.

## 8.4 Methodologies and Technical Process

(1) Based on the social survey method, statistical analysis, GIS and remote sensing combined research methods, Xijiang River Basin's social economic, ecological environment and basin spatial databases are constructed.

(2) Using the model simulation method (such as CLUE model) to analyze the spatial pattern of land use in the Xijiang River Basin under different scenarios, and simulate its future dynamics under the set scenario.

(3) Using the account-preparing method to evaluate the ecosystem services of the Xijiang River Basin.

(4) Using the scenario analysis method to construct different compensation scenarios to measure the ecological compensation standards between the upstream and downstream regions of the Xijiang River Basin.

The main technical process is as follows:



Fig. 8-2 Technology Process

## 8.5 Schedule and Expected Result

Complete the research and draft of report by the end of October 2019. A Report on Ecological Compensation Standards for the Xijiang River Basin in Guangxi Based on Scenario Analysis will be provided