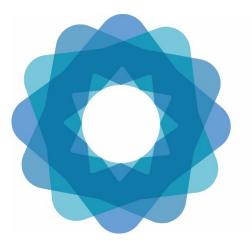
Program


Morning:

- Recap on extent
- Condition account + exercise in ARIES for SEEA Explorer
- Coffee: 10.30-11.00
- Modeller: uploading shapefile + semantic annotation Lunch: 12:30-13:30 lunch

Afternoon:

- Break-up per country
- Coffee: 15.00 -15.30
- ES recap

System of Environmental Economic Accounting

Extent and condition accounts

Bram Edens, PhD

Senior Statistician, Environmental-Economic Accounts Section **United Nations Statistics Division**

Land accounts

SEEA land accounts

- Multiple accounts:
 - > Physical asset accounts
 - Land cover
 - Land use
 - Ownership
 - > Monetary asset account
- Different formats of land accounts:
 - > Asset accounts
 - > Change matrices
- Accounts but derived from underlying maps
- Land accounts should be complete (cover whole territory of the country)

maps r whole territory of the country)

Land cover

- The observed physical and biological cover of the Earth's surface and includes natural vegetation and abiotic (non-living) surfaces
- Current land cover is a function of natural changes in the environment and of previous and current land use
- Sometimes combined with land use
- SEEA Land cover classification (interim)
- Based on definitions from the Land Cover Classification System (LCCS) of the FAO

	Category
1	Artificial surfaces (including urban and associated areas)
2	Herbaceous crops
3	Woody crops
4	Multiple or layered crops
5	Grassland
6	Tree covered areas
7	Mangroves
8	Shrub covered areas
9	Shrubs and/or herbaceous vegetation, aquatic or regularly flooded
10	Sparsely natural vegetated areas
11	Terrestrial barren land
12	Permanent snow and glaciers
13	Inland water bodies
14	Coastal water bodies and inter-tidal areas

Land use

- Land use
 - > reflects both (i) the activities undertaken and (ii) the institutional arrangements put in place; for a given a the purposes of economic production, or the maintena restoration of environmental functions
 - > Land that is "used" implies existence of some hu intervention, including active management, e.g. protected areas
 - > Comprehensive: includes land in use and land n
- Differences with land cover:
 - > Clear-cutting
 - > Forest (part is protected area; part is used for log
- Categories not defined on economic activity, but rath general purpose and role of the user of the area
 - > If multiple uses, go with primary/dominant use

area for	1	Land
area for ance and	1.1	Agriculture
	1.2	Forestry
_	1.3	Land used for aquaculture
aman	1.4	Use of built up and related areas
	1.5	Land used for maintenance and restoration of environmenta
	1.6	Other uses of land n.e.c.
not in use	1.7	Land not in use
	2	Inland waters
	2.1	Inland waters used for aquaculture or holding facilities
	2.2	Inland waters used for maintenance and restoration of envir
gging)	2.3	Other uses of inland waters n.e.c.
58118/	2.4	Inland waters not in use
ner		

Land asset account: basic form

	Artificial surfaces	Crops	Grassland	Tree- covered area	Mangroves	Shrub- covered area	Regularly flooded areas	Sparse natural vegetated areas	Permanent snow, glaciers Terrestrial and inland barren water land bodies	Coastal water and inter-tidal areas
Opening stock of resources	12 292.5	445 431.0	106 180.5	338 514.0	214.5	66 475.5	73.5	1 966.5	12 949.5	19 351.5
Additions to stock										
Managed expansion	183.0	9 357.0								
Natural expansion			64.5							1.5
Upward reappraisals			4.5							
Total additions to stock	183.0	9 357.0	69.0							1.5
Reductions in stock										
Managed regression		147.0	4 704.0	3 118.5	9.0	1 560.0	1.5			
Natural regression					1.5	64.5				
Downward reappraisals						4.5				
Total reductions in stock		147.0	4 704.0	3 118.5	10.5	1 629.0	1.5			
Closing stock	12 475.5	454 641.0	101 545.5	335 395.5	204.0	64 846.5	72.0	1 966.5	12 949.5	19 353.0

- Managed \rightarrow due to human activity
- Natural \rightarrow resulting from natural processes
- Reappraisals -> reflect changes due to use of updated information (e.g. new satellite imagery)
- Most countries only distinguish additions and reductions

Asset accounts: example South Africa

• Most countries only distinguish additions and reductions

Broad land cover classes (tier 1)	Natural or semi- natural	Cultivated	Built-up	Waterbodies*	TOTAL
Opening stock 1990	100 710 016	16 156 026	3 003 883	2 096 528	121 966 453
Additions to stock	3 366 559	1 991 959	597 238	288 754	6 244 510
Reductions in stock	2 540 175	2 339 226	400 503	964 606	6 244 510
Net change in stock	826 384	(347 267)	196 735	(675 852)	
Net change as % of opening	0.8%	-2.1%	6.5%	-32.2%	
Unchanged (opening -					
reductions)	98 169 841	13 816 800	2 603 380	1 131 922	
Unchanged as % of opening	97.5%	85.5%	86.7%	54.0%	
Turnover (additions +					
reductions)	5 906 734	4 331 185	997 741	1 253 360	
Turnover as % of opening	5.9%	26.8%	33.2%	59.8%	
Closing stock 2014	101 536 400	15 808 759	3 200 618	1 420 676	121 966 453

Source: Statistics South Africa 2020

Land account change matrix: example India

• Extremely useful and policy relevant, as it shows conversions

						2015-16				Grand tota	l (2011-12)
Land use / land cover classes		Agriculture	Barren / un- culturable	Built-up	Forest	Grass / grazing	Snow and glacier	Wetlands / water bodies	Area	% of geo- graphic area	
	ŀ	Agriculture	1,809,033	5,1 <mark>0</mark> 3	2,648	2,299	94	8	2,547	1,821,732	55.41
	Barrei	n / unculturable	4,237	348,460	589	2,285	61	68,471	614	424,717	12.92
		Built-up	238	442	118,239	48	2	0	29	118,998	3.62
011 -12		Forest	5,085	6,838	205	712,342	207	637	230	725,543	22.07
12	Gra	ass / grazing	147	408	118	368	22,502	1,333	521	25,397	0.77
	Sno	w and glacier	0	1,643	0	131	7	30,799	1	32,581	0.99
	Wetland	ds / water bodies	2,536	966	49	155	679	77	133,833	138,294	4.21
		Area	1, <mark>821,276</mark>	363,860	121,848	717,629	23,551	101,325	137,774	3,287,263	99.99
	l total 5-16)	% of geo- graphic area	55.40	11.07	3.71	21.83	0.72	3.08	4.19	99.99	
								S	ource: I	ndia Polio	cy Brief 20

Table 1: Extent account for India's land use and land cover between 2011-12 and 2015-16

Physical asset account for forest (and other wooded) land

- Distinguishes different types of forests
 - > Primary forest
 - > Planted forest
 - > Other woodland
- Sometimes distinguish between different species
- Ideally consistent with land account
- Follows FAO definition of forest
 - > Afforestation
 - > Deforestation
- Expressed in ha

Physical asset account for forest and other wooded land (hectares)

Opening stock

Additions to st

Afforestatio

Natural expa

Total additio

Reductions in s

Deforestatio

Natural regr

Total reducti

Closing stock o

Туре	of forest and o	other wooded	land	
Primary forest	Other naturally regenerated forest	Planted forest	Other wooded land	Tota
20	100	150	130	4
	2	5		
	3			
	5	5		
2	10		5	
			3	
2	10	0	8	
<mark>1</mark> 8	95	155	122	3
	Primary forest 20	Primary forestOther naturally regenerated forest2010020100223355210210210	Other naturally regenerated forestPlanted forest2010015020253353552100	Primary forestnaturally regenerated forestPlanted

Ecosystem Extent Accounts

Land accounts vs ecosystem extent accounts

- Land cover/use data required for deriving ecosystem extent account:
 - > Land cover is a fundamental layer, but extent requires more.
 - > Identification of ecosystem types through delineation of various ecosystem characteristics (temperature, aridity, topography/elevation maps)
 - > Example: land cover = trees; temperature > 30 C = tropical forest
- SEEA EA recommends IUCN GET (Global Ecosystem Typology) as reference classification
 - > Realms (terrestrial) -> biomes (tropical forest) -> Ecosystem Functional Groups -> montane tropical forest
 - > 98 different EFGs
 - > National classifications (vegetation, ecozones) can be linked

IUCN Global Ecosystem Typology 2.0

Descriptive profiles for biomes and ecosyste functional groups

David A. Keith, Jose R. Ferrer-Paris, Emily Nicholson and Richard

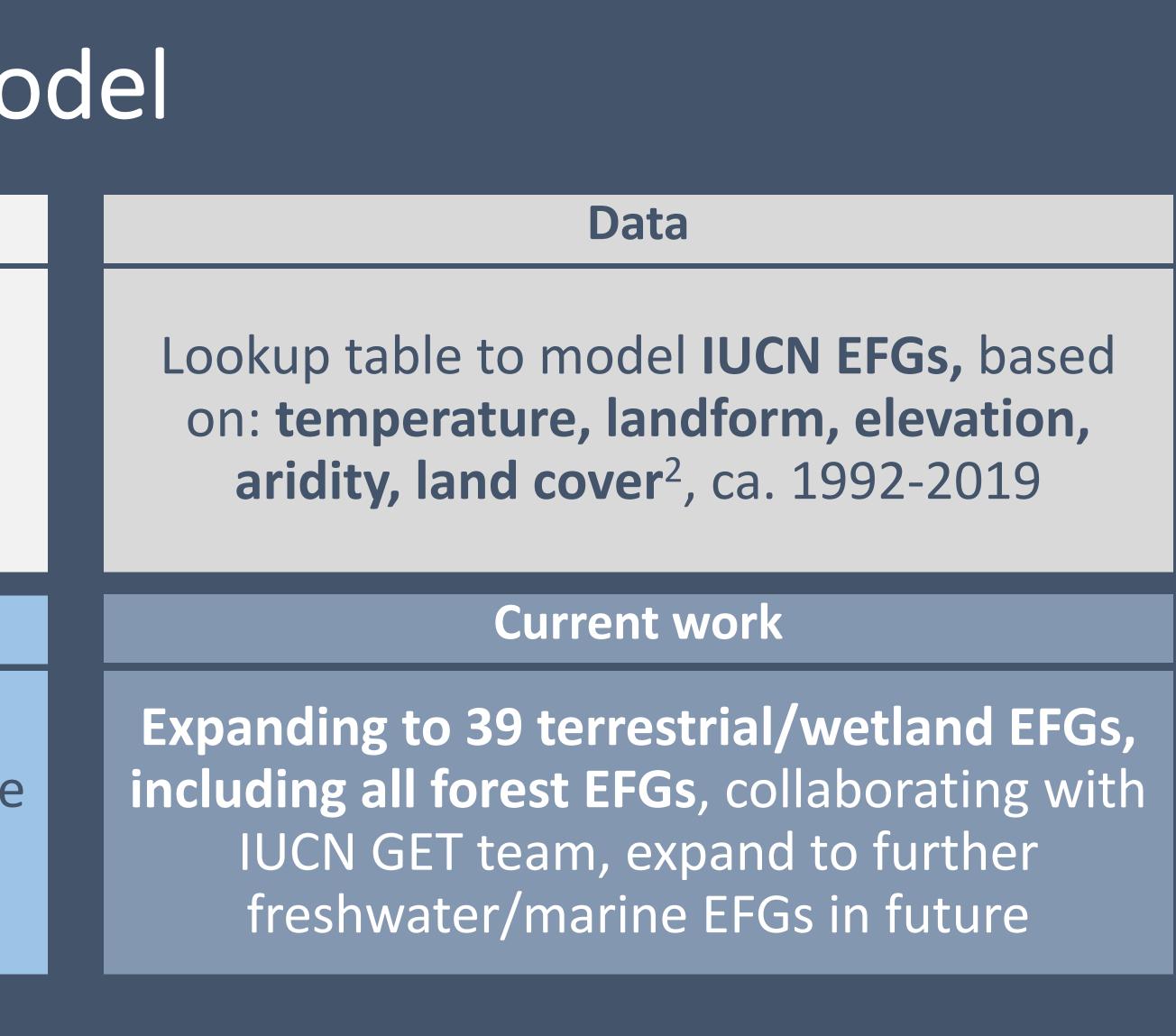
2 Approaches for compiling extent accounts

- A: Model extent on the basis of a multi-dimensional look-up table
 - > Inputs: land cover; DEM; climate data, etc.
 - > Model derives which ecosystem type is to be found where.
 - > Ecosystem boundaries **dynamic**: e.g. can change due to climate change
 - pros: fully aligned with SEEA (e.g. directly derive IUCN GET classes); easy to derive other accounts in ARIES.
 - cons: no ecological ground-truthing i.e. ecosystem types are predicted by the model; conversion assumed to be instantaneous
- B: Assess land cover change within static biome/ecosystem type boundaries, a disaggregation of the land account
 - > Historic ecosystem types boundaries function as Ecosystem Accounting Areas
 - > Needs authoritative ecosystem map
 - pros: consistency with RLE assessment; can be done in ARIES but also in Arc/QGIS cons: may require additional cross-walk to IUCN GET; may be difficult to define / obtain a

 - historical extent

SEEA

ARIES for SEEA extent model


Methods

Maps **29 ecosystem functional groups** (EFGs, primarily terrestrial & wetland) based on IUCN GET 2.0 methods.¹ Consulted virtually with D. Keith & colleagues.

Outputs

Net change, additions & reductions, change matrix for ecosystems & land cover types

1: Keith, D. et al. 2020. IUCN Global Ecosystem Typology 2.0. IUCN: Gland, Switzerland. - 2: Using thresholds from Sayre, R., et al. 2020. An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems. Global Ecology and Conservation 21:e00860.

Multi-	dimen	sional loo	ok-up ta	able				
IUCN Glob	al Ecosysten (SEEA)	n Typology v. 2.0		ARIES Eco	system Ty	ypes Parame	eters	
Level 1 (realms)	Level 2 (biomes)	Level 3 (functional group)	ARIES ecosystem types	Landcove	, r index	Annual mean temperatu e (degree C)	r Landform	Elevation (m)
		lowland rainforest T1.2 Tropical- subtropical dry forests &	subtropical dry forest	Forest	> 0.65 0.05-	> 18	all but mountain	
		T1.3 Tropical-	and thicket Tropical-	Forest	0.65	> 18	all	all
SEE	A	subtropical montane rainforests	subtropical montane rainforest	Forest	> 0.65	> 18	mountain	all

Land cover data

- A key objective of accounting is to assess changes over time. This requires:
 - > a time series of land cover maps
 - > comparable maps (i.e. same classification; preferably also same techniques)
- Aries uses ESA-CCI data set as default for global (European Space Agency Copernicus Climate Initiative)
 - > 300 m resolution, 22 land cover classes
 - > 1992-2019 (ESA-CCI will continue until 2025)
- Overall accuracy: 70 %
- New generation EO data has higher resolution (e.g. 10m), but:
 - > Shorter time series (e.g. 2017-2021)
 - > Few land cover classes (10 or so)
- At the moment we continue to use ESA CCI

Examples Ecosystem Extent

Example of ecosystem extent – South Africa

Table 14. Extent account for terrestrial ecosystem types summarised by biome, 1990 and 2014, in hectares***

Nama-

Karoo

24 936 548

420 995

-420 995

24 515 553

24 515 553

146 910

-1,7%

0

	Albany Thicket	Desert	Forest	Fynbos	Grassland	IOCB
Historical extent	3 531 231	626 207	462 518	8 165 366	33 090 325	1 171 284
Additions to extent	0	0	0	0	0	0
Reductions in extent	230 091	8 237	70 673	2 253 375	11 330 606	619 656
Net change in extent Net change as % of	-230 091	-8 237	-70 673	-2 253 375	-11 330 606	-619 656
historical	-6,5%	-1,3%	-15,3%	-27,6%	-34,2%	-52,9%
Closing extent 1990	3 301 140	617 970	391 845	5 911 991	21 759 719	551 628
Opening extent 1990	3 301 140	617 970	391 845	5 911 991	21 759 719	551 628
Additions to extent	44 432	1 142	24 900	241 184	1 444 446	75 114
Reductions in extent	36 008	1 260	7 689	196 035	1 180 183	63 783
Net change in extent Net change as % of	8 424	-118	17 211	45 149	264 263	11 331
opening Net change in	0,3%	0,0%	4,4%	0,8%	1,2%	2,1%
relation to historical extent Net change as % of	-221 667	-8 355	-53 462	-2 208 226	-11 066 343	-608 325
historical	-6,3%	-1,3%	-11,6%	-27,0%	-33,4%	-51,9%
Closing extent 2014	3 309 564	617 852	409 056	5 957 140	22 023 982	562 959

* Cultivated areas, built-up areas and waterbodies are treated as biomes for the purpose of the ed waterbodies, subsistence cultivation or habitation.

** Changes in the extent of waterbodies between 1990 and 2014 reflect primarily that 1990 was a dams).

*** Blank cells represent no data.

78 038	885 303	33 631	58 021	2 339 226	400 503	964 606	
68 872	274 752	4 791	131 933	-347 267	196 735	-675 852	
0,3%	0,8%	0,1%	6,4%	-2,1%	6,5%	-32,2%	
-352 123	-5 121 367	-246 582	-543 379				
-1,4%	-13,0%	-3,2%	-19,8%				
24 584 425	34 297 155	7 574 997	2 199 270	15 808 759	3 200 618	1 420 676	12
ecosystem e	extent account	table. There is	s no reliable s	patial informa	ation on the	historical ex	tent
a much wett	ter year than 2	014. Waterbo	dies include b	oth natural a	nd artificial v	water bodies	s (su

Culti-

vated*

16 156 026

16 156 026

16 156 026

1 991 959

Succulent

7 821 579

251 373

-251 373

7 570 206

7 570 206

38 422

-3,2%

0

Кагоо

Savanna

39 418 522

5 396 119

-5 396 119

34 022 403

34 022 403

1 160 055

-13,7%

0

Azonal

vegetation

2 742 873

675 312

-675 312

-24,6%

2 067 561

2 067 561

189 954

0

Built-

3 003 883

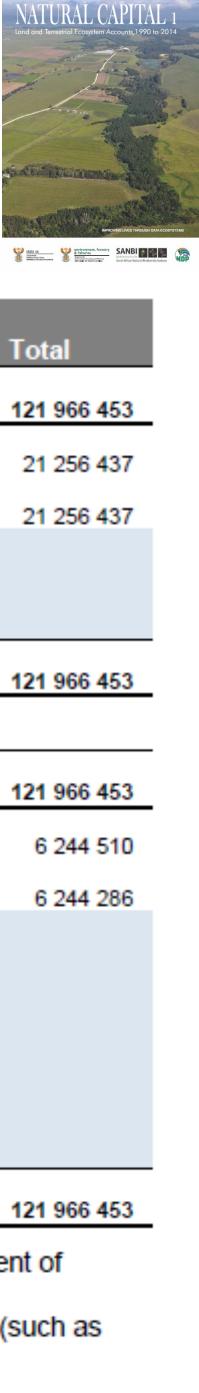
3 003 883

3 003 883

597 238

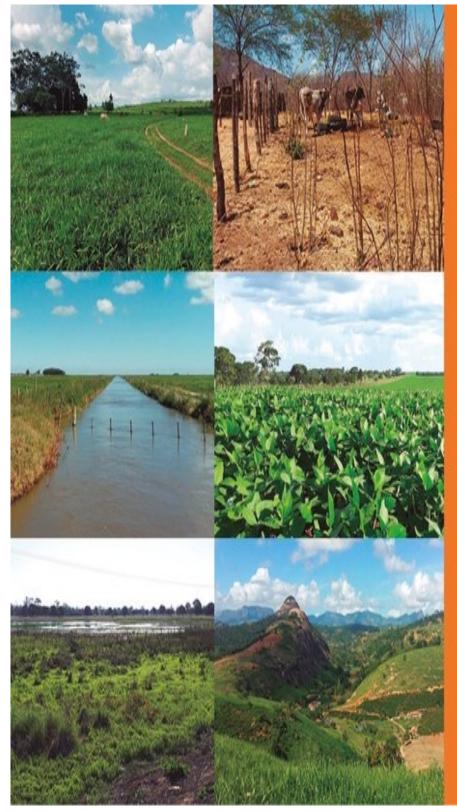
up*

Water-


bodies**

2 096 528

2 096 528


2 096 528

288 754

Example Brazil – SEEA and Goal A monitoring

Ecosystem extent accounts in Brazil (2000-2018)

Contas Econômicas Ambientais

Contas de Ecossistemas

O Uso da Terra nos Biomas Brasileiros 2000 - 2018

S≫*IBGE*

Source: (IBGE 2020), Ecosystem Accounts: Land Use in Brazilian Biomes 2000-2018

The ecosystem extent accounts (2000-2018), by biomes, show that Brazilian terrestrial biomes lost about 500 thousand km² of their natural areas, due to conversion into modified areas such as land used for crops and grazing.

Example – SEEA and Goal A monitoring

Tota Areas naturais 5 877 298 2 955 326 066	Áreas antro- pizadas 200 2 510 306 460 530 137 419	3 684 512	Áreas antro- pizadas	Cerra Áreas naturais	do Áreas antro- pizadas
naturais 5 877 298 2 955	antro- pizadas 200 2 510 306 460 530	naturais 00 3 684 512	antro- pizadas	A DECEMBER OF	antro-
2 955	2 510 306 460 530	3 684 512	150 005		
2 955	460 530		450 005		
	107 413	1 282 193 539	450 865 248 427 56 170	1 185 192 509 96 274	790 693 135 983 40 218
	201	10			
5 554 187 1 509 69 316	2 833 417 107 787 39 980	3 492 255 385 27 376	643 122 39 064 12 073	1 089 427 284 23 068	886 458 37 357 14 573
	201	12			
5 486 380 3 592 49 030	2 901 224 93 615 48 177	3 465 264 2 043 21 123	670 113 39 654 20 574	1 066 643 320 18 392	909 242 35 913 17 841
	201	14			
5 440 942 2 118 36 435	2 946 662 60 715 26 398	3 446 184 644 23 541	689 193 36 413 13 516	1 048 571 314 8 417	927 314 16 599 8 496
	201	16			
5 406 625 12 894 32 098	2 980 979 74 296 55 245	3 423 287 8 185 16 761	712 090 38 566 30 057	1 040 468 2 706 10 688	935 417 25 583 17 671
	201	18			
5 387 421	3 000 030	3 414 711	720 599	1 032 486	943 329
(-) 489 877 (-) 8,34	489 724 19,51	(-) 269 801 (-) 7,32	269 734 59,83	(-) 152 706 (-) 12,88	152 636 19,30
536 013 9,12	1104 162 43,99	294 879 8,00	534 514 118,55	160 972 13,58	350 234 44,29
	1 509 69 316 5 486 380 3 592 49 030 5 440 942 2 118 36 435 5 406 625 12 894 32 098 5 387 421 (-) 489 877 (-) 8,34	1 509 69 316 107 787 39 980 201 5 486 380 3 592 49 030 2 901 224 93 615 48 177 2 900 48 177 2 946 662 2 118 36 435 2 946 662 60 715 26 398 5 406 625 32 098 2 980 979 74 296 55 245 5 387 421 3 000 030 (-) 489 877 (-) 8,34 536 013 1104 162	1 509 107 787 385 69 316 39 980 27 376 2012 2012 3 465 264 3 592 93 615 2 043 49 030 48 177 21 123 2014 2043 2043 49 030 48 177 21 123 2014 2043 2043 49 030 48 177 21 123 2014 2046 662 3 446 184 2 118 60 715 644 2 18 60 715 644 3 6 435 2 980 979 3 423 287 5 406 625 2 980 979 3 423 287 12 894 74 296 8 185 32 098 55 245 16 761 2018 2018 16 761 5 387 421 3 000 030 3 414 711 (-) 489 877 489 724 (-) 269 301 (-) 489 877 489 724 (-) 269 301 (-) 7,32 536 013 1104 162 294 879	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c } 1 509 & 107 787 & 385 & 39 064 & 284 \\ \hline & 39 980 & 27 376 & 12 073 & 23 068 \\ \hline & 2012 \\ \hline & 2012 \\ \hline & 2012 & 2012 \\ \hline & 5 486 380 & 2 901 224 & 3 465 264 & 670 113 & 1 066 643 & 320 \\ \hline & 3 592 & 93 615 & 2 043 & 39 654 & 320 \\ \hline & 9 030 & 48 177 & 21 123 & 20 574 & 18 392 \\ \hline & & & & & & & & & & & \\ \hline & & & & &$

Source: (IBGE 2020), Ecosystem Accounts: Land Use in Brazilian Biomes 2000-2018

The higher absolute totals of natural area reduction were concentrated on the Amazônia and Cerrado biomes (86,2%)

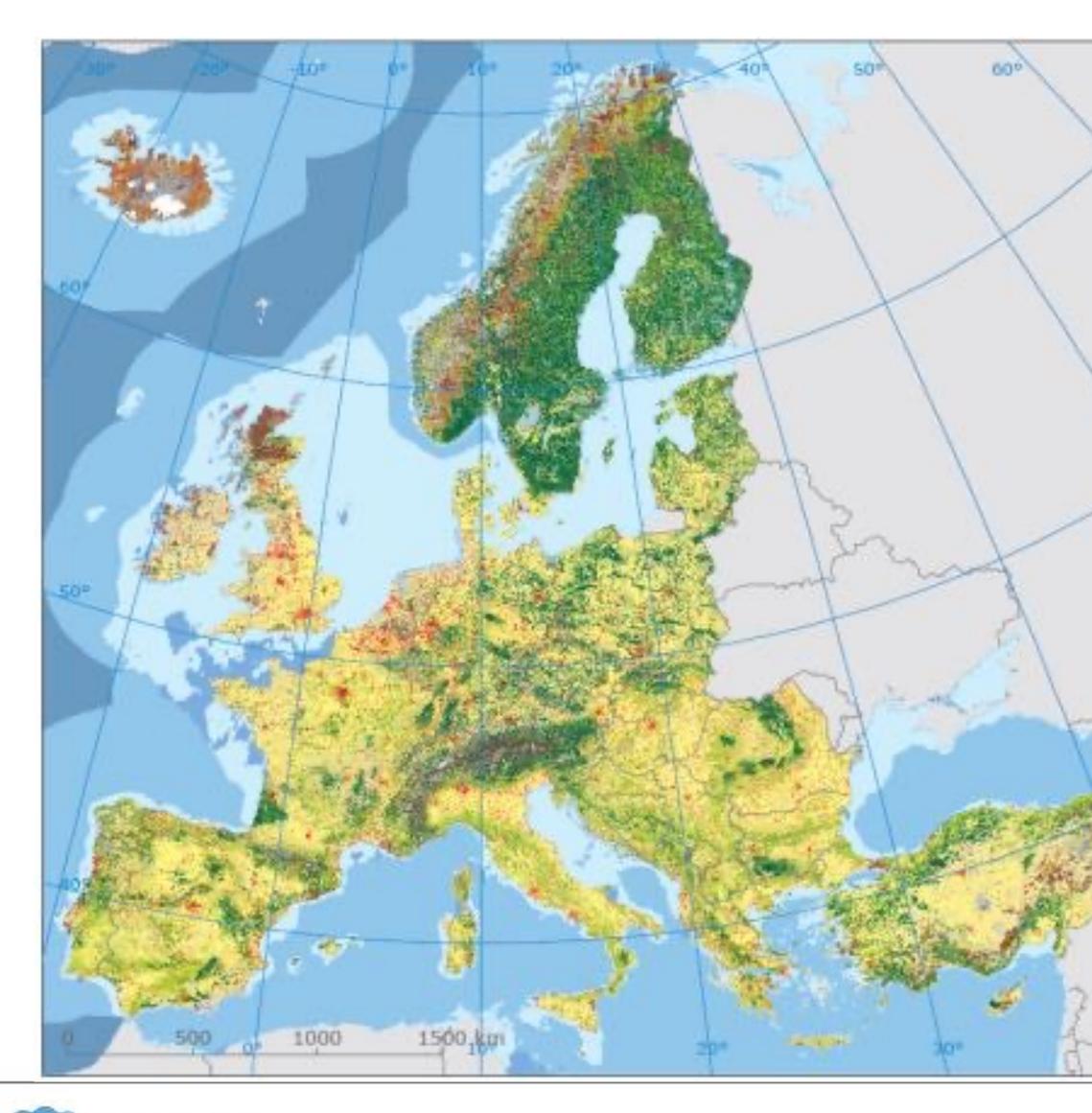
Example: Ecosystem accounts in EU (1/3)

- In 2015, the EU launched a pilot project for an integrated system of ecosystem accounting, INCA
 - > Resulted in the compilation of extent, condition and ecosystem services accounts (Vysna et al., 2021)
- 2011 EU Directive on Environmental-economic accounts covers 6 modules
 - > Being expanded to include also ecosystems accounts; forest accounts and accounts for environmental subsidies + similar transfers

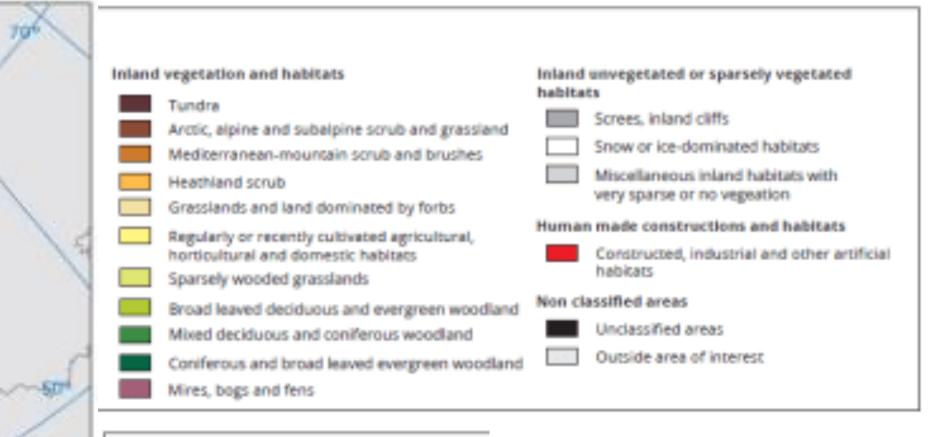
Accounting for ecosystems and their services in the European Union

(INCA

2021 edition



Samprat Gerundzsier



Ecosystem extent account (2/3)

Source: EEA, 2015a, European ecosystem assessment: Concept, data, and implementation, EEA Technical Report No 6/2015, European Environment Agency

Ecosystem map (aggregated)

Marine waters

E	-		gional	1000
CUI	ope.	an rej	cronal	245425

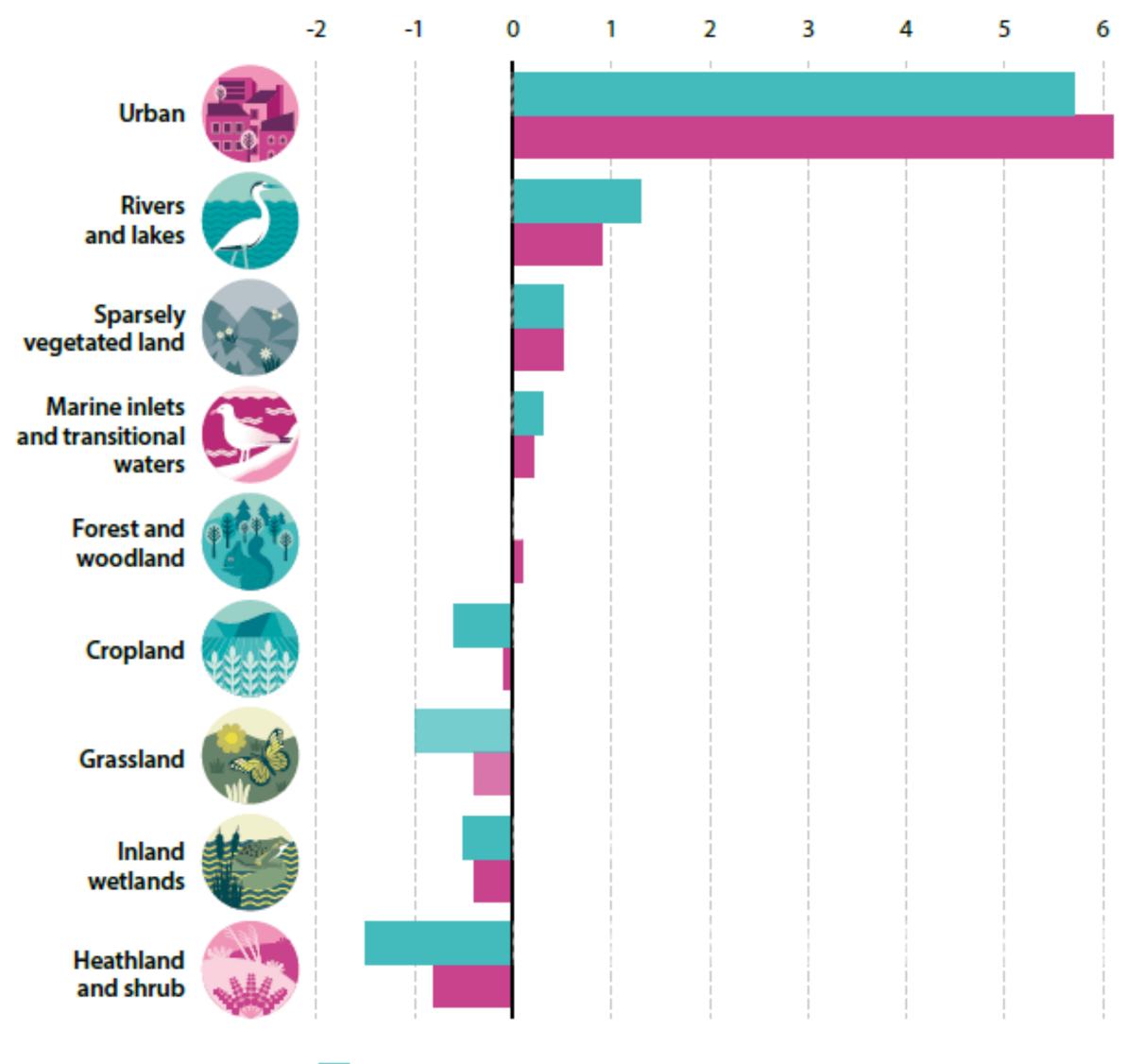
Open waters

Marine seabed and coastal habitats

- Sublittoral sediment Infralittoral and circalittoral rock and other hard substrata
- Marine habitats
 Coastal habitats

Inland surface waters

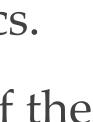
Inland waters and shores


 Built on Corine LC data, aggregated into 9 broad ETs

Extent example, cont. (3/3)

- Some of the findings are:
 - > Urban ecosystems increased in extent by 5.8% (2000 – 2018) At the expense of farmland and semi-natural ecosystem.
 - > Changes in the extent of semi-natural ecosystem types are mostly smaller within the Natura 2000 areas than outside.

Figure 3: Changes in ecosystem extent inside and outside Natura 2000 areas, 2000-2018, EU28 (%)


Ecosystem Condition accounts

Ecosystem condition

- Ecosystem condition: quality of an ecosystem measured in terms of its abiotic and biotic characteristics. • Condition is assessed wrt composition, structure and function which, in turn, underpin the integrity of the
- ecosystem, and support its capacity to supply ecosystem services on an ongoing basis.
- Naturalness and intactness are sometimes also used to describe the distance of an ecosystem from an (undisturbed) reference.
- Measures of ecosystem condition may reflect multiple values and may be undertaken across a range of temporal and spatial scales.
- Condition accounts complement environmental monitoring systems by using data from different monitoring systems, for example concerning biodiversity, water quality and soil properties.
- Key role is integrating data
- Ecosystem condition is often defined by measuring the similarity (or the distance) of a current ecosystem to a reference state, such as minimally impacted by people or a historical state

Condition accounts

- SEEA EA: a three-stage approach to account for ecosystem condition.
 - additional assumptions.
 - > Outputs at each stage are relevant for policy and decision making
 - they are reasonably homogeneous in terms of their main characteristics
- Ecosystem condition indicators are rescaled versions of ecosystem condition variables
- the indicator is calculated by a linear transformation shown in the formula below.

$$I = (V - VL) / (VH - VL)$$

where I is the value of the indicator, V is the value of the variable, VH is the high condition score and VL is the low condition score.

> The move from one stage to the next requires a progressive building of data and the use of

> The primary spatial units are ecosystem assets and these are expected to be delineated such that

• The simplest conversion uses two reference levels to reflect a high or low condition score. In this case,

ECT groups and classes

Group A: Abiotic ecosystem characteristics

Class A1. Physical state characteristics: physical descriptors of the abiotic components of the ecosystem (e.g., soil structure, water availability)

Class A2. Chemical state characteristics: chemical composition of abiotic ecosystem compartments (e.g., soil nutrient levels, water quality, air pollutant concentrations)

Group B: Biotic ecosystem characteristics

Class B1. Compositional state characteristics: composition / diversity of ecological communities at a given location and time (e.g., presence / abundance of key species, diversity of relevant species groups)

Class B2. Structural state characteristics: aggregate properties (e.g., mass, density) of the whole ecosystem or its main biotic components (e.g., total biomass, canopy coverage, annual maximum normalized difference vegetation index (NDVI))

Class B3. Functional state characteristics: summary statistics (e.g., frequency, intensity) of the biological, chemical, and physical interactions between the main ecosystem compartments (e.g., primary productivity, community age, disturbance frequency)

Group C: Landscape level characteristics

Class C1. Landscape and seascape characteristics: metrics describing mosaics of ecosystem types at coarse (landscape, seascape) spatial scales (e.g., landscape diversity, connectivity, fragmentation)

Variable account

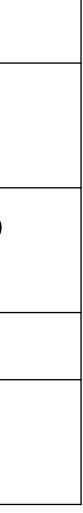
Table 5.2: Ecosystem condition variable account

	Variables			Ecosystem type	
SEEA Ecosystem Condition	Descriptor	Measurement			
Typology Class	Descriptor	unit	Opening value	Closing value	Change
Dhysical state	Variable 1				
Physical state	Variable 2				
Chemical state	Variable 3				
Compositional state	Variable 4				
Compositional state	Variable 5				
Structural state	Variable 6				
Functional state	Variable 7				
Landscape/seascape characteristics	Variable 8				

Reference levels

- A reference level is the value of a variable at the reference condition, against which it is meaningful to compare past, present or future measured values of the variable
- A reference condition is the condition against which past, present and future ecosystem condition is compared to in order to measure relative change over time.

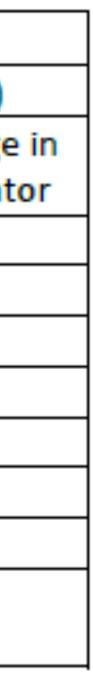
Possible reference conditions


Undisturbed or minimally-disturbed condition of an intact ecosystem. The condition of an ecosystem with maximal ecosystem integrity with no or minimal disturbance.

Historical condition: The condition of an ecosystem at some point or period in its history that is considered to represent the stable natural state (e.g., the pre-industrial period or pre-intensive agriculture).

Least-disturbed condition: the currently best available condition of an ecosystem.

Contemporary condition: The condition of an ecosystem at a certain point or period in its recent history for which comparable data are available.



Indicator account

Table 5.3: Ecosystem condition indicator account

	1	1	1						
		Measure							
SEEA Ecosystem	Indicators	ment unit	Variable	e values	Reference	Indicator values (rescaled)			
Condition Typology			Opening	Closing	Upper level	Lower level	Opening	Closing	Change
Class	Descriptor		value	value	(e.g., natural)	(e.g., collapse)	value	value	indicate
Dhusical state	Indicator 1								
Physical state	Indicator 2								
Chemical state	Indicator 3								
Compositional state	Indicator 4								
Compositional state	Indicator 5								
Structural state	Indicator 6								
Functional state	Indicator 7								
Landscape/seascape characteristics	Indicator 8								

Condition index

Table 5.4: Ecosystem condition indices reported using rescaled indicator values ('mean values' approach)

SEEA Ecosystem Condition	Indicators	Ecosystem type							
Typology Class	indicators		ndicator value		Index value				
	Descriptor	Opening value	Closing value	Indicator weight	Opening value	Closing value			
	Indicator 1	0.5	0.25	0.05	0.025	0.013			
Physical state	Indicator 2	0.9	0.7	0.05	0.045	0.035			
	Sub-index				0.07	0.048			
Chemical state	Indicator 3	0.625	0.5	0.1	0.063	0.05			
Total Abiotic characteristics					0.133	0.098			
	Indicator 4	0.94	0.89	0.067	0.063	0.062			
Compositional state	Indicator 5	0.75	0.50	0.033	0.025	0.017			
	Sub-index				0.088	0.079			
Structural state	Indicator 6	0.5	0.25	0.12	0.06	0.03			
Functional state	Indicator 7	1	0.66	0.08	0.08	0.053			
Total Biotic characteristics					0.228	0.162			
Landscape and seascape characteristics	Indicator 8	0.5	0.2	0.5	0.25	0.1			
Ecosystem condition index	Index			1.0	0.611	0.360			

Condition index - alternative

Table 5.5: Ecosystem condition indices reported using discretised ranges (i.e., area (%) in each range of condition)

Indicator weight 0.05 0.05 0.1	High 10 70 40 30	Opening valu Medium 80 25 52.5 40	e Low 10 5 7.5 30	High 5 60 32.5	Closing value Medium 45 20 32.5	e Low 50 20 35
0.05 0.05 0.1	10 70 40	Medium 80 25 52.5	Low 10 5 7.5	5 60 32.5	Medium 45 20	Low 50 20
0.05 0.1	10 70 40	80 25 52.5	10 5 7.5	5 60 32.5	45 20	50 20
0.05 0.1	70 40	25 52.5	5 7.5	60 32.5	20	20
0.1	40	52.5	7.5	32.5		
					32.5	35
	30	40	20			
0.007			50	20	50	30
0.067	80	15	5	80	10	10
0.033	100	0	0	0	0	100
	86.6	10.1	3.4	53.6	6.7	39.7
0.12	30	30	40	10	20	70
0.08	100	0	0	50	30	20
0.5	30	30	40	20	20	60
	42.2	28.9	28.9	25.8	23.7	50.5
	0.08 0.5 1.0	0.5 30	0.5 30 30	0.5 30 30 40	0.5 30 30 40 20	0.5 30 30 40 20 20

Multiple ecosystem types

Table 5.6: Ecosystem condition account (condition indices) for multiple ecosystem types

	Stylized ecosystem types							
Accounting entries	Forests	Lakes	Cropland	Urban areas	Wetlands	Seagrass		
Opening condition value								
Change in abiotic ecosystem								
characteristics (physical and								
chemical state)								
Change in biotic ecosystem								
characteristics (composition,								
structure and function)								
Change in landscape/seascape								
characteristics								
Net change in condition								
Closing condition value								

Table 5.7: Examples of ecosystem condition variables for selected ecosystem types⁵²

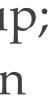
			A2 Chaminal state	D4 Commonition of state	D2 Chrysterral state	D2 Functional state	Ct Landson (Landson)
-		A1 Physical state	A2 Chemical state	B1 Compositional state	B2 Structural state	B3 Functional state	C1 Landscape / seascape
T1	Tropical-	Soil water availability in	Soil organic carbon	Tree species richness; Bird		Dry matter productivity;	Forest area density; Land
	subtropical	the driest quarter;	content; Leaf and litter	species richness	Dominant tree height;	Presence of seed	diversity; Forest connecti
	forests	Wetness	nitrogen concentration			dispersing species	Ratio of edge distance to
					Deadwood volume; Forest		area of forest patches
					age class distribution;	regeneration); Water	
					Density of epiphytes	stress index	
T2	Temperate-	-		Tree species richness;	Forest floor depth (soil	Dry matter productivity;	Forest area density; Land
	boreal forests	(NDWI)	content; Air pollutant	Lichen species richness;	layer thickness); Tree	Density of trees with	diversity; Forest connection
	& woodlands		concentration; Foliar and	Bird species richness	cover density; Deadwood	hollows for nesting;	
	biome		litter nitrogen		volume; Forest age class	Presence of top predator	
			concentration		distribution	species (food web	
						functionality); Vegetation	
						index (NDVI); Water stress	
						index	
Т3	Shrublands &	% Burnt area; Soil layer	Soil organic carbon	Bird species richness	Tree cover density	Dry matter productivity;	Landscape diversity;
	shrubby	thickness	content; Soil phosphorus			Proportion of re-sprouting	Shrubland/forest connect
	woodlands		concentration			species after fire (capacity	
						for regeneration)	
T4	Savannas and	% Bare ground	Soil organic carbon	Bird species richness;	The presence/density of	Dry matter productivity	Connectivity of trees; Gra
	grasslands		content; Soil pH	Butterfly species richness;	trees/shrubs	Abundance of termite	connectivity
				Proportion of non-native		mounds (organic matter	
				species		turnover)	
T5	Deserts and	Water availability; Degree	Soil pH	Reptile species diversity	Vegetation cover	Density of viable seeds in	Spatial distribution of wat
	semi- deserts	of surface crusting		or abundance		soil (capacity for	
						regeneration)	
T6	Polar-alpine	% Bare ground; Snow	Pollutant concentrations	Lichen species richness	Vegetation cover; Lichen		Diversity of habitat types
	(cryogenic)	depth; Extent of sea ice			cover or abundance on		Connectivity of routes for
					rocks		migratory species
T7.1	Annual	Water holding capacity;	Soil organic carbon	Bird species richness	Share of organic farming;	Soil respiration rate	The presence/ share of se
	croplands	Soil bulk density;	content; Soil nutrient		Crop diversity; Share of	(decomposition); Gross	natural vegetation fragme
	-				time or area as fallow	primary production	(small woody features);
		(NDWI)			land		Landscape diversity (mos
T7.4	Urban and	Imperviousness	NO ₂ concentration	Bird species richness	Share of urban green		Average distance of resid
	•				0	+	v

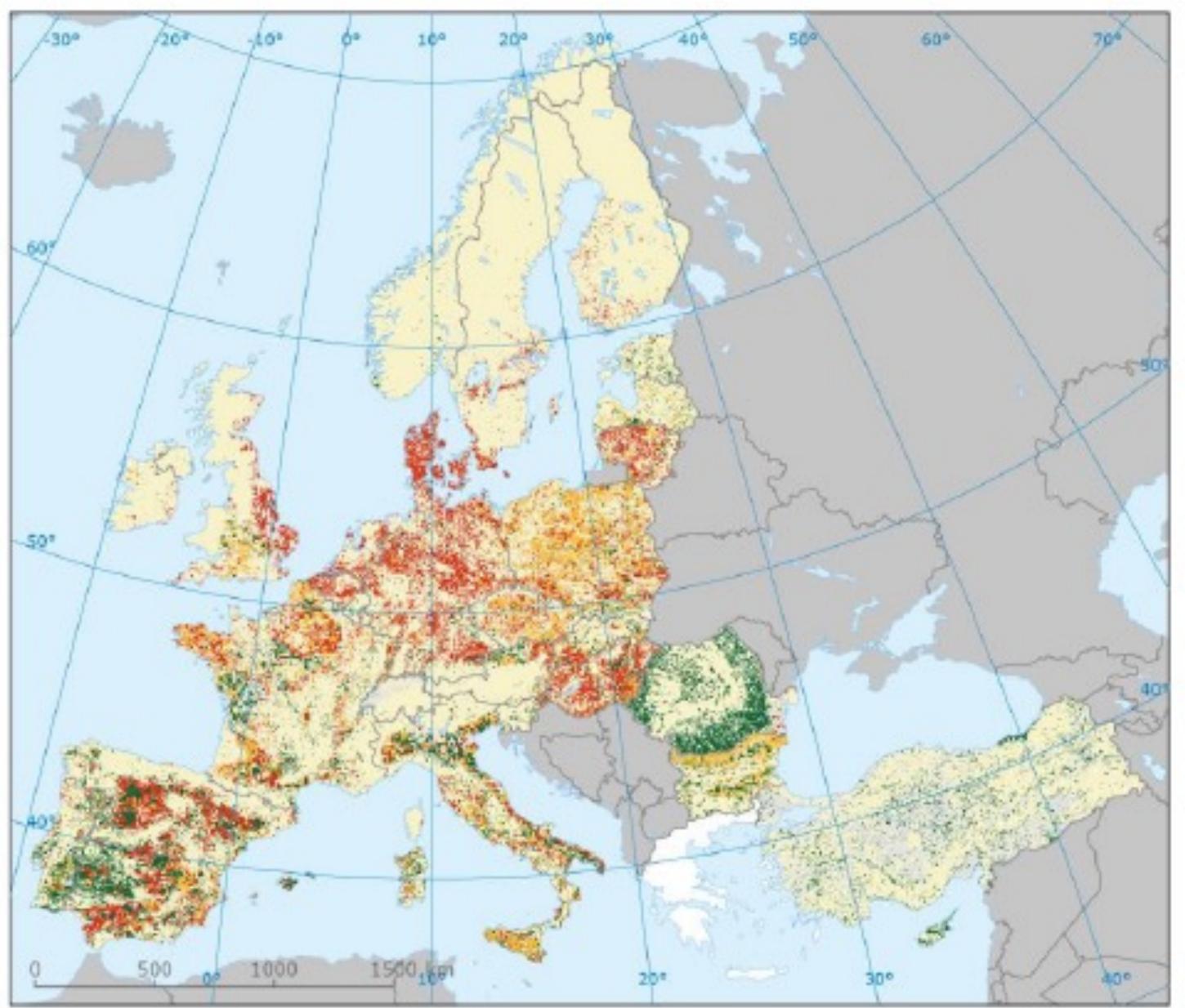
Examples Ecosystem Condition

EU: Forest condition variable account

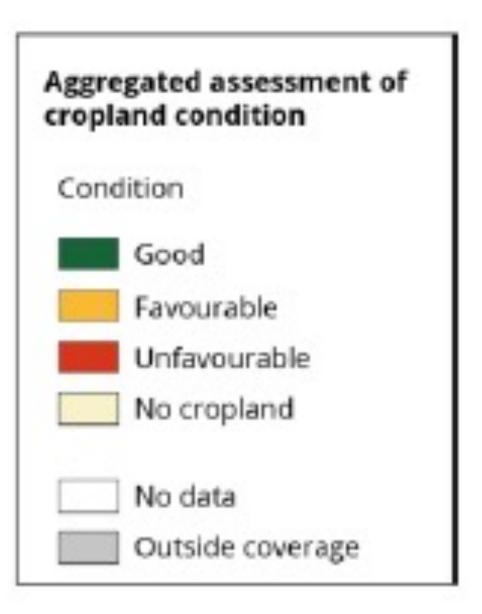
Table 2: Forest condition variable account for EU28 (spatially averaged values)

Condition group	Condition class	Descriptor	Units	Opening stock (2010)	Closing stock (2020 - projected)	Change (% per decade)	Confidence
Abiotic characteristics	Physical state	Soil moisture content	%	13.50	13.45	-0.4	medium
	Chemical	Effective rainfall	mm/year	-32	-44	-38	high
	state	Exceedances of critical loads for eutrophication	equivalent/ha/ year	251.8	173.7	-31	medium
		Tropospheric ozone concentration	ppb hours	19 265	13 293	-31	high
Biotic characteristics	Composition	Common forest birds index (')	Index (1990 = 100)	93.23	104.86	17.8	medium
	Structure	Biomass volume	m³/ha	200	220	10	medium
		Dead wood	tonne/ha	4.1	4.5	10.3	medium
		Defoliation	%	20	22	10	high
	Function	Evapotranspiration	mm/year	482.0	490.2	1.7	high
		Dry matter productivity	tonne/ha/year	11.8	13.1	11.1	high
Landscape char	acteristics	Forest area density	%	72.0	72.1	0.1	high


Source sdg_15_60, EU Ecosystem Assessment


(*) Closing stock for the common forest bird index uses year 2017

- Some findings:
 - > Forest pollution levels are declining across the EU28 but absolute levels of still very high
 - > Forest productivity increased.
 - > Pressures from climate change are increasing (evapotranspiration up; effective rainfall down
 - > Concerning trend is defoliation
 - > Fragmentation remained virtually constant since 2010.

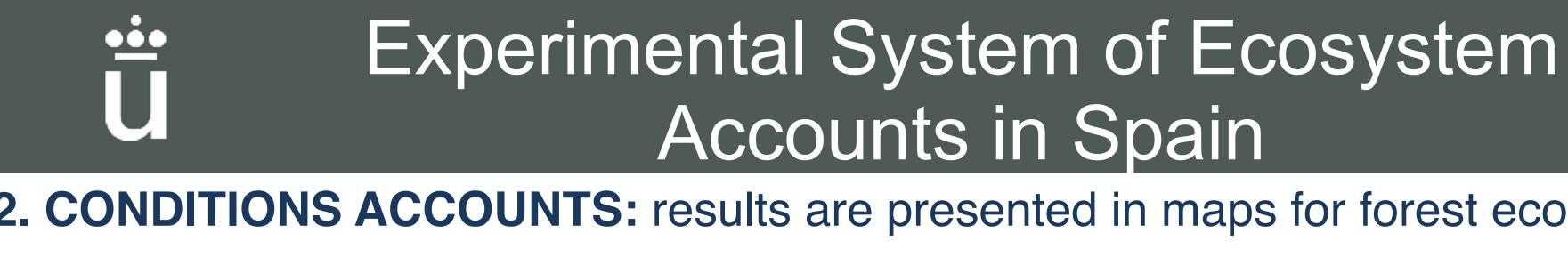


Ecosystem condition account - EU

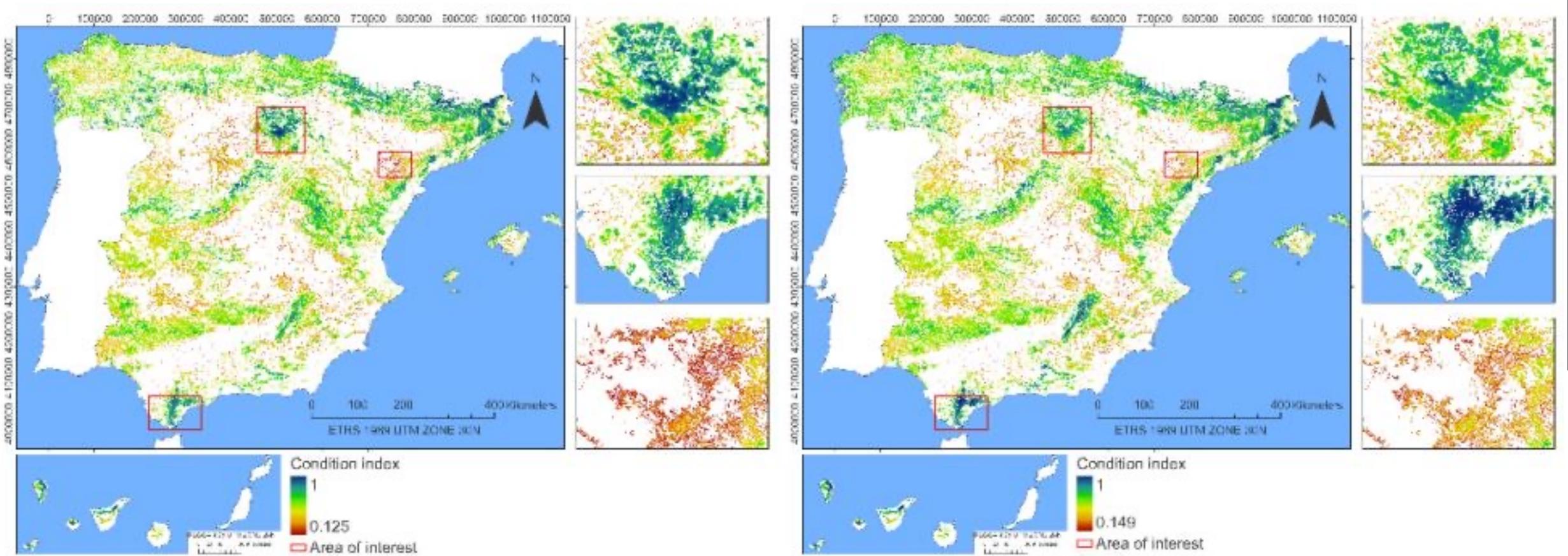
••• Experimental System of Ecosystem Accounts in Spain

ecosystem services.

Group	Class	Weigth	eigth Indicator		Resolution (m)
		0,07	NDWI	Landsat	30
Abiotic characteristics	Physical state	0,07	Soil organic carbon	Lucas	1000
		0,07	Ozone (AOT40f)	EEA	2000
	Chemical state	0,07	Nitrogen Deposition (Critical Loads)	EEA	5000
		0, I	Forest bird richness	MITERD	1000
Biotic	Composition state	0, I	Richness of forest flora	MITERD	1000
characteristics	Structural state	0,12	Tree cover	Modis	250
character istres		0, I	NDVI	Landsat	30
	Functional state	0,08	Gross primary production	Modis	500
Landscape characteristics	Landscape	0,12	Forest area density	Guidos	50
	characteristics	0, I	Naturalness index	Guidos	50



- 2. CONDITIONS ACCOUNTS: The SEEA-EA condition is a metric that captures, through a set of key indicators,
- the state and functioning of the ecosystem in relation to both its ecological condition and its capacity to provide
 - Indicators used in the forest condition in Spain



periods between 2000-2015. 2000

2. CONDITIONS ACCOUNTS: results are presented in maps for forest ecosystems for different time

2015

Experimental System of Ecosystem Accounts in Spain

different time periods between 2000-2015.

••••

Condition index by forest type

Forest Type	2000	2015	Change	Forest Type	2000	2015	Change
Broad. Sclerophyllous Med.	0.536	0.561	0.025	Con. Atlantic	0.601	0.630	0.029
Broad. Continental Med.	0.556	0.565	0.009	Con. Alpine	0.735	0.730	-0.005
Broad. Mountain Med.	0.607	0.598	-0.009	Con. Insular	0.585	0.660	0.075
Broad. Atlantic	0.568	0.602	0.033	Mixed Sclerophyllous Med.	0.571	0.601	0.030
Broad. Alpine	0.661	0.693	0.032	Mixed Continental Med.	0.602	0.606	0.005
Broad. Insular	0.661	0.712	0.050	Mixed Mountain Med.	0.591	0.601	0.009
Con. Sclerophyllous Med.	0.546	0.573	0.027	Mixed Atlantic	0.580	0.616	0.036
Con. Continental Med.	0.593	0.596	0.003	Mixed Alpine	0.758	0.775	0.017
Con. Mountain Med.	0.609	0.606	-0.003	Mixed Insular	0.654	0.716	0.063

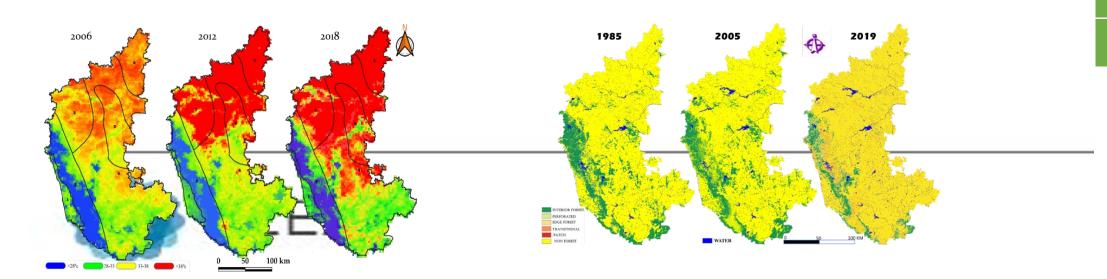


Table 1: Condition accounts of Uttara Kannada (2005-2020) India Condition SEEA - EA Indica Para Conditions tor meter

- NCAVES project:
 - > Uttrara Kanada district
- Integrates 20 different variables
 - > multiple soil characteristics such as organic carbon, nitrogen, pH;
 - > status of flora and fauna in terms of endangered species;
 - > structural state variables such as above and belowground biomass;
 - > net primary productivity as key measure for functional status;
 - > land surface temperature and forest fragmentation
- Each of these variables were assessed using spatial data and models

Uttara

Ecosys

i ct s	SEEA -EA Conditions	Indica tor	Para meter		Openi	ng -2005	(%)	Closing	g - 2020
				Weight	High	Med.	Low	High	Med.
a Kannada	Abiotic ecosystem	Soil	K	0.017	0.0	84.4	15.6	0.0	99.3
		Soil	Ν	0.017	100.0	0.0	0.0	0.0	0.0
			Р	0.017	0.0	0.0	100.0	37.6	62.4
			OC	0.017	0.0	72.4	27.6	0.0	100.0
			S	0.017	45.4	54.6	0.0	45.4	54.6
			Zn	0.017	0.0	85.8	14.2	0.0	100.0
			Fe	0.017	0.0	100.0	0.0	0.0	100.0
			В	0.017	0.0	0.0	100.0	0.0	0.0
			Cu	0.017	0.0	99.3	0.7	0.0	99.3
			Mn	0.017	0.0	100.0	0.0	0.0	100.0
			EC	0.017	100.0	0.0	0.0	100.0	0.0
			рН	0.017	94.4	5.6	0.0	100.0	0.0
	Biotic -	Flora		0.05	87.8	5.5	6.7	73.1	5.5
	Compositional State	Fauna		0.05	56.3	11.0	32.7	46.9	11.0
	Biotic -	AGB		0.05	46.2	35.2	18.6	33.1	42.1
	Structural State	BGB		0.05	46.2	35.2	18.6	33.1	42.1
	Biotic - Functional State	NPP		0.10	32.4	55.2	12.4	1.4	84.8
	Landscape	Fragmen	ntation	0.25	55.0	10.8	34.2	45.8	13.5
	Level	LST		0.25	20.6	53.2	26.2	0.6	69.9
stem conditi	on Account		Index	1.00	39.6	35.9	24.5	25.8	46.3

Note: N: Nitrogen, P: Phosphorous, K: Potash, OC: Organic Carbon, Zn: Zinc, Fe: Iron, B: Boron, Cu: Copper, Mn: Manganese, S: Sulphur, EC: Electrical conductivity, AGB: Above ground biomass, BGB: Below ground Biomass, NPP: Net Primary Productivity, LST: Land Surface Temperature

) ((%)
	Low
3	0.7
0	100.0
4	0.0
0	0.0
6	0.0
0	0.0
0	0.0
0	100.0
3	0.7
0	0.0
0	0.0
0	0.0
5	21.4
0	42.1
1	24.8
1	24.8
8	13.8
5	40.8
9	29.6
3	28.0