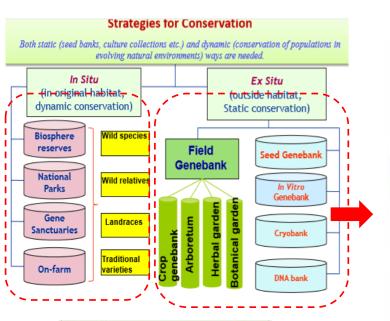

Agriculture, Biodiversity and Ecosystem Services in Malaysia

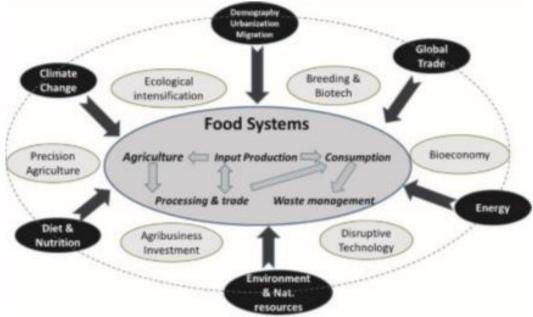
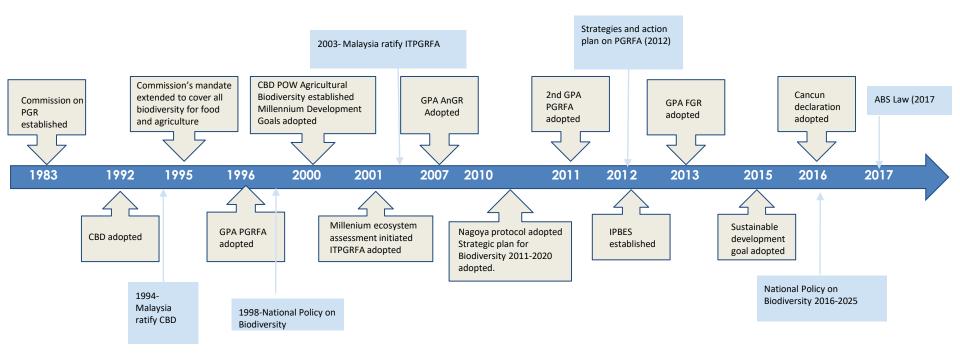
Rosliza J., Badrulhadza A., E.Elini E.A., Saiful Zaimi J., Nurin Izzati Z., Siti Noor Aishikin A.H., Hairazi R. Malaysian Agricultural Research and Development Institute (MARDI)

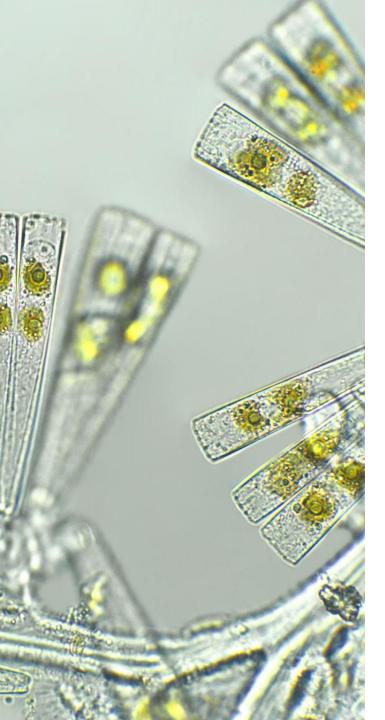

Outline of presentation

- Sustainable development in agriculture and policy
- 2. Research on ecosystem services in agriculture
- 3. Way Forward
- 4. Conclusion

Agroecosystems, in particular through sustainable use of soils, may provide **important** regulating, as well as provisioning services including climate change mitigation and food production.

Biodiversity & Food System

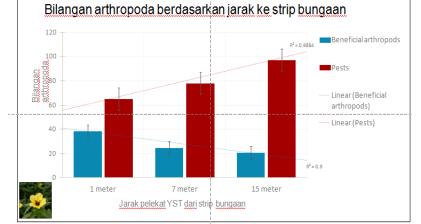

Fig. 1.1. Key drivers or threats (dark ovals) and opportunities (light ovals) of agri-food systems.

Sustainable development in agriculture and policies

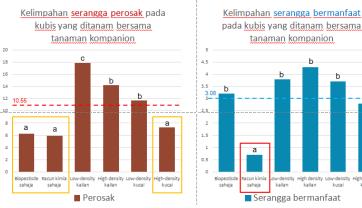
KEY DEVELOPMENTS IN THE INTERNATIONAL RECOGNITION OF THE IMPORTANCE OF BIODIVERSITY FOR FOOD AND AGRICULTURE (IPBES)

Research on ecosystem services in agriculture by MARDI

- Biological control agent
- Ecoengineering in fruit ecosystem
- Ecoengineering in vegetable ecosystem
- Ecoengineering in rice ecosystem
- Valuation of ecosystem services

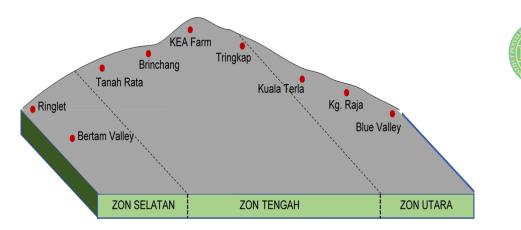

BIOLOGICAL CONTROL & BIOPESTICIDE APPLICATION IN VEGETABLES ECOSYSTEM

ECOENGINEERING WITH COMPANION CROPS TO REDUCE PEST IN CABBAGE FIELD



Control -Convensional

- Best Yield High Density Kucai
- Worse Yield Low Density Kailan



BIOLOGICAL CONTROL AGENT STATUS IN CH

Population of *P. xylostella* and percentage of parasitism in cabbage filed in 3 main zone in Cameron Highlands in year 1990, 1995 and 2011

	Pest/Biocontrol	Southern zone/year		Middle zone/year			North zone/year			
		1990	1995	2011	1990	1995	2011	1990	1995	2011
1.	<i>P. xylostella</i> (bil/10 pokok)	11.08	18.20	12.38	7.35	16.70	15.50	10.33	29.10	18.55
2.	D. Semiclausum (%)	3.95	10.40	5.29	27.70	17.00	6.00	5.33	5.30	9.78
3.	C. vestalis (%)	11.90	9.00	4.78	7.55	2.80	1.50	10.33	2.80	2.07

1) Syed AR, Sivapragasam A, Loke WH, Fauziah I. (1997). Classical control of diamondback moth: the Malaysian experience. In: Sivapragasam A, Loke WH, Hussan AK, Lim GS (eds.) The Management of diamondback moth and other crucifer pests: Proceedings of the Third International Workshop, Kuala Lumpur, Malaysia, 29 October -1 November 1996. Pp. 71 - 77.

2) Saiful Zaimi, J. Abu Zarim, U., & Mohamad Roff, M.N. (2011). A Survey of insect parasitoids of Plutella xylostella in Cameron Highlands, Malaysia. National Horticulture Conference 2011, 18-12 October 2011, Hotel Renaissance, Melaka

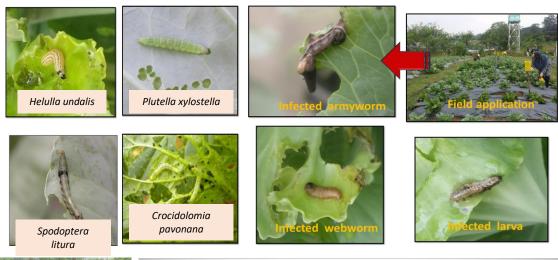
Biocontrol agent rearing

rearing *Plutella xylostella*

Biocontrol Lab in MARDI Cameron Highlands

Mass rearing of biological control

Preparation of cabbages in pots

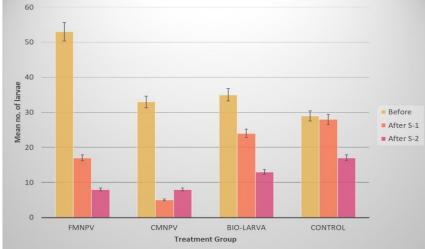

Rearing of *Plutella xylostella* as host for the parasitoid

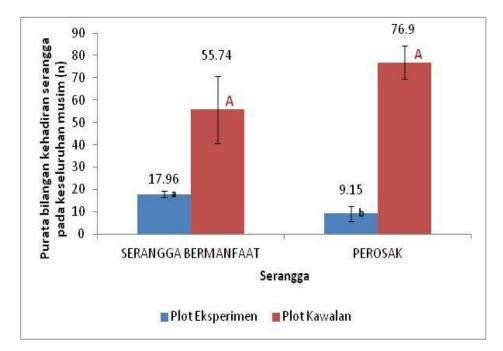
Rearing biocontrol agents-Diadegma semiclausum and Cotesia vestalis

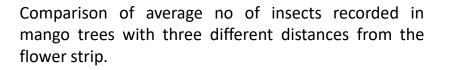
BIOPESTICIDE

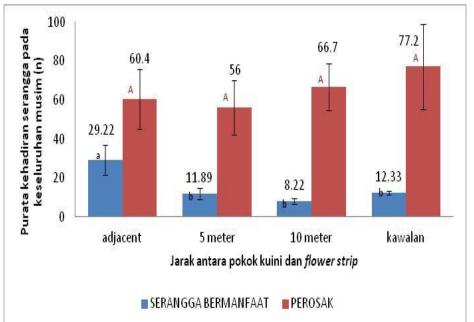
Multi Virus Biopesticide

- Multi virus biopesticide (FMNPV) contains nuclear polyhedrosis virus (NPV) dan granulosis virus (GV)
- Suitable for controlling Lepidopteran pest on crucifers - cabbage webworm, diamondback moth larvae, tobacco armyworm and cabbage heart-caterpillar
- Application: by spraying (using knap sprayer etc)




Fig. 1: Mean no. of larvae before and after spray between treatment groups (organic farm)


ECOENGINEERING IN FRUIT ECOSYSTEM



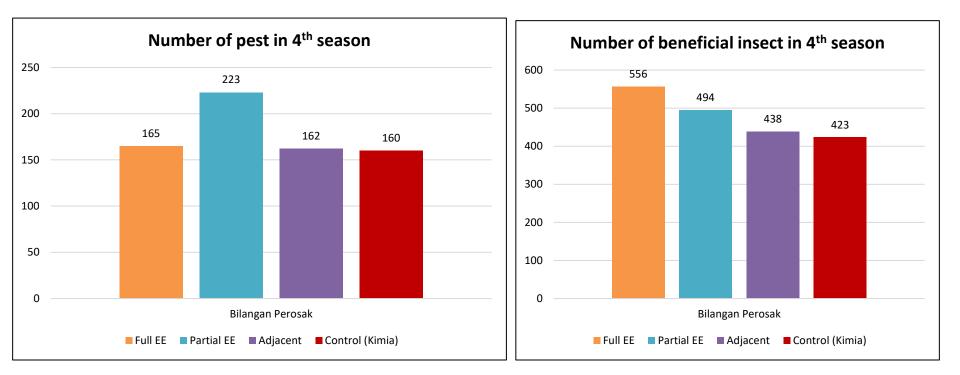
Ecoengineering in mangifera farm

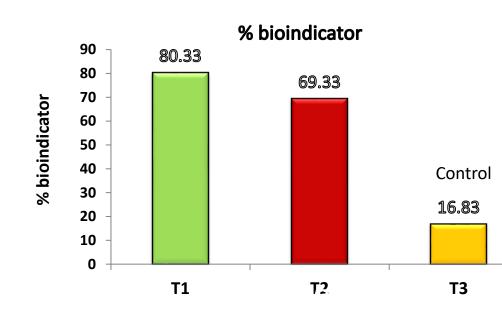
- Pests and diseases are a major problem for *Mangifera* crops in Malaysia.
- The establishment of flower strips is an alternative method that can be used in the management of environmentally friendly pests in agriculture.
- This concept involves cultural practices such as vegetation management in habitat manipulation that works to increase the presence of beneficial insects consisting of predatory insects and parasitoids at the same time to help control biological pests

ECOENGINEERING IN RICE ECOSYSTEM

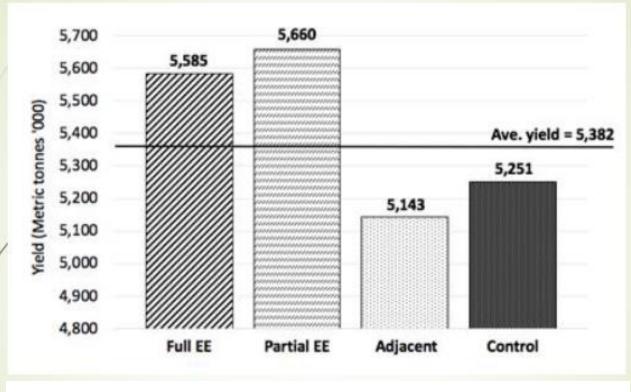
Collaboration MARDI-IADA Barat Laut Selangor

- Parit 2, Sg. Hj. Dorani, Sg. Besar, Selangor
- Planting seasons 2016-2017





YST



POLLEN AND NECTAR SOURCES FOR BIOCONTROL AGENTS

% bioindicator (e.g. Chironomus spp.) which related to pesticide usage. High number of bioindicator shows healthy environment and free from pesticide.


Average yield for 3 seasons

Benefit	Value (RM)	Implication	Value (RM)	
Additional outputs Outputs more than 1.24 MT	RM 1,860.00	Cost increment Cost for flower seeds Cost for flower seedlings (estimated)	RM 200.00 RM 1,200.00	
Cost reduction Pesticides Services for pesticide spraying	RM 200.00 RM 100.00	Cost reduction	D144 400.00	
Total	= RM2,160.00	Total	= RM1,400.00	

Ecoengineering vs conventional partial budget

Materials Balance Model adapted in rice production cycle

Research efforts by MARDI in enhancing sustainable agriculture in line with conservation of natural resources

3 THE ALTERNATIVES OF RICE STRAW DEGRADATION AND WATER MANAGEMENT TOWARDS SUSTAINABLE ENVIRONMENTAL QUALITY

Alternative Management of Water Management in Rice Planting Experiment

Treatment	Water Management Alternative
T1 (Control)	Continuous flooding throughout the season (3-5 inches of standing water)
Τ2	Saturated conditions from tillering stage until heading and flooding until maturity
Т3	Saturated conditions throughout the season (without standing water)

Comparison of Straw Management Practices in Rice Planting Experiment

ltem	Without Microbe (T1 Control)	With Microbe (T2)
Method	Straw burning (dry season)Soil incorporation (wet season)	 Dumped (1.5 - 2.0 meters) Use of microbes is active It took about 3 weeks
Advantages	 Killing soil pathogens 	 Restores essential nutrients (NPK, Ca, Mg, S & Si)
Disadvantages	 Stimulates germination of weeds & rice paddy Environmental pollution Affects the rate of seed germination Loss of 8 - 10% of K element 	 Stimulates the germination of weeds and rice paddy Specific moisture and temperature requirements
Cost (wage)	 MADA – RM 60 PBLS – RM 128 	Not yet determined

Source: Hairazi Rahim, Aimi Athirah Ahmad & Engku Elini Engku Ariff (2020). Penilaian Ekonomi Pengurusan Alternatif Jerami & Air dalam Penanaman Padi: Kajian Kes MADA & IADA Barat Laut Selangor. *Laporan Projek Sosioekonomi Pusat ES 2019*. Ms. 197-205

How much of emission reduction estimated from these alternatives?

Indicator/Item	Straw Alternative (PBLS)		Water Alternative (MADA)		
	T1	T2	T1	T2	Т3
Total Emission Calculated (mg/m2/season)	9599.23	8768.42	13125.1	8352.38	8598.34
Reduce Methane Released (%)		8.65%		36.36%	34.49%
Total Emission Calculated (kg/hectare/season)	95.99	87.68	131.25	83.52	85.98
Total Released (MT/hectare/season)	0.10	0.09	0.13	0.08	0.09
CO2 Equivalent (MT)*	2.40	2.19	3.28	2.09	2.15
Current Price (RM/ MT CO2 Eq)**	62.71	62.71	62.71	62.71	62.71
Total Price Released (RM/MT/hectare/season)	150.49	137.47	205.77	130.94	134.80

Comparison of GHG Emission between Conventional and Alternative Practices

Note: *(Brander and Davis, 2012); ** (Brad and Nadja, 2019)

And how much the environmental value (in monetary benefits) can be reap from these alternatives?

Gronory	Planted Area	Straw Alternative	Water Alternative			
Granary	(ha)	T2	T2	Т3		
MADA	100685	RM1,311,925.55	RM7,534,258.55	RM7,145,614.45		
IADA Barat Laut Selangor	19057	RM248,312.71	RM1,426,035.31	RM1,352,475.29		
KADA	28072	RM365,778.16	RM2,100,627.76	RM1,992,269.84		
IADA Kerian	21108	RM275,037.24	RM1,579,511.64	RM1,498,034.76		
IADA Seberang Perak	14140	RM184,244.20	RM1,058,096.20	RM1,003,515.80		
IADA Pulau Pinang	12782	RM166,549.46	RM956,477.06	RM907,138.54		
IADA Ketara	4876	RM63,534.28	RM364,871.08	RM346,049.72		
IADA Kemasin Semerak	5053	RM65,840.59	RM378,115.99	RM358,611.41		
IADA Pekan	5322	RM69,345.66	RM398,245.26	RM377,702.34		
IADA Rompin	2920	RM38,047.60	RM218,503.60	RM207,232.40		
Total Monetary Value		RM2,788,615.45	RM16,014,742.45	RM15,188,644.55		

Estimated Monetary Benefits of Alternative Straw & Water Management Applications

Source: Primary data and Ministry of Agriculture (2019)

Optimistic scenario (nationwide implementation)

- Water alternative RM15,188,644.55 until RM16,014,742.45 per season
- Straw alternative RM2,788,615.45 per season

Source: Hairazi Rahim, Aimi Athirah Ahmad & Engku Elini Engku Ariff (2020). Penilaian Ekonomi Pengurusan Alternatif Jerami & Air dalam Penanaman Padi: Kajian Kes MADA & IADA Barat Laut Selangor. *Laporan Projek Sosioekonomi Pusat ES 2019*. Ms. 197-205

naan racun serangga iga menurun dan ian ekosistem sawah

urusan ak rusi kaedah teraan i ini unyai besar iamalkan n sia

ADZA

kajian ini, perbandingan menu populasi artoropod antara kejuru plot kejuruneraan ekologi menar

menunjuk kan plot kejuruteraan ekologi boleh menampung lebih banyak penggunaan tanaman berbunga yang kaya nektar meyakinkan pesawah padi bahawa kaedah ini mampu

PTTAK PIMERHATVAN PROGRAM PINGORIJISAN TANAMAN PARI ERAASASKAN KUJURUTTRAN IROJROJ IADA BAHAT LAUT SIJANGOR DINGAN KERJASAMA MARQI

DRULHADZA' (tigo dan kini) dan Syaliza Hanom (dua dari kanan) bersama pegawai IADA Baran 11 Selangan dan MARDI di hadapan projek kejuruteraan ekologi di Sungai Haji Darani.

KEJURUTERAAI EKOLOGI

> Mahamad Nepale schartad, Acceleg Japanes, com.my

Annalan bergar arter asto andream articlati samu ingensa galkai dalam mengur taskan sata regana permatik seriarta regana atam di karwanan pertantan seperti kawah pertantan seperti kawah

> 283

menggalak itan akriyot kawalan nerangga prinoak necara bioingi Menerang amalan

Microsoft and approximately a second and a s

ndudsan terduanga yaha na nekitar lukud berbangai sigia i terrejuat berbindang

https://www.hmetro.com.my/agro/2018/02/3 15492/bendung-serangan-makhluk-perosak Siaran di akhbar dan media sosial

Amalan kejuruteraan ekologi wujudkan kelestarian dan persekitaran sawah yang ceria, indah dan sejahtera - Harian Metro, 23 Februari 2018. **#betterMARDI #ourfoodourfuture #Negaraku**

HMETRO.COM.MY Bendung serangan makhluk perosak Amalan kejuruteraan ekologi adalah satu alternatif yang...

Ecoengineering at FELCRA, Seberang Perak

ECOENGINEERING PLOT IN TANJUNG KARANG, SELANGOR

HYBRID RICE PLOT IN LADANG MERDEKA, MULONG KELANTAN.

Way Forward

• Integrated ecosystem services valuation needed to support agroecology transition

Conclusion

Agroecosystem should be treated as an important asset in an economy

€

• Ecosystem services should be valued in a similar manner as any other forms of wealth

• Need to understand the economics and ecology in assessing ecosystem services and their values and implications in a wealth accounting framework and to achieve sustainable development goals (SDGs)