

United Nations Environment Programme UN Environment The Economics of Ecosystems and Biodiversity *Agriculture & Food*

Training on Scenarios and Models *Wednesday 27 February 2019, Nairobi International Symposium*

Supported by:

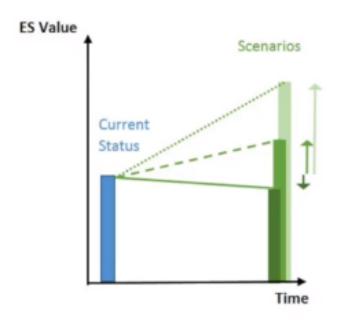
Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

based on a decision of the German Bundestag

European Commission GLOBAL ALLIANCE FOR THE FUTURE OF FOOD

Session 1: PARTICIPATORY SCENARIO DEVELOPMENT

100 March 100 Ma


"DEEP IN OUR HEARTS, WE WOULD ALL CHOOSE A SCENARIO WITH NO SURPRISES"

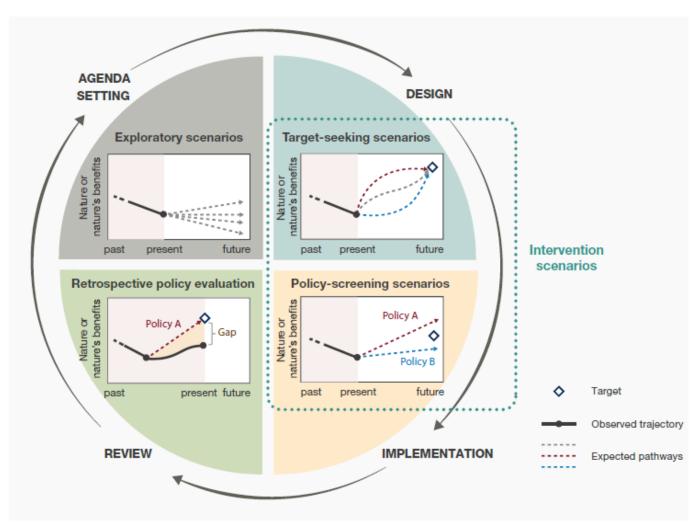
Scenarios and models are important tools for understanding and communicating the effects of natural and human drivers on ecosystem services

Selecting the right tools is just as complicated.

Developing scenario storylines

- 1. Select the right scenario approach (do's and don'ts)
- 2. Align scenario type to policy context
- Define spatial and temporal dimension, and number of scenarios
- 4. Stakeholder engagement
- 5. Direct and indirect drivers

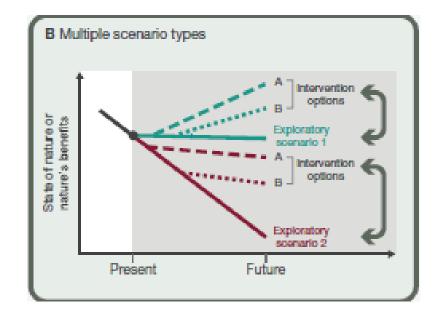
teebweb.org

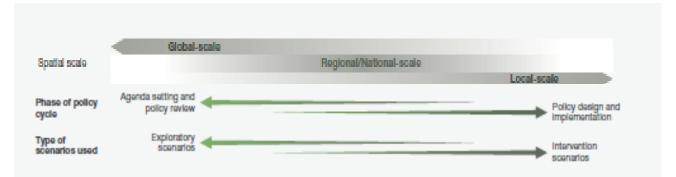

6. Visualization options

1. Scenario approach - what makes an effective scenario?

- 1. Relevance
- 2. Participatory
- 3. Legitimate
- 4. Plausible
- 5. Distinct and contrasting scenarios

- 6. Scientifically credible
- 7. Comprehensive


2. Align scenario type and policy context



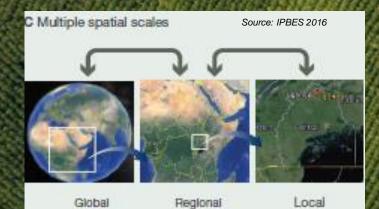
Choice of type of scenario is highly contingent on the policy cycle phase

TEEB typically focuses on intervention scenarios

Linking different types of scenarios, spatial scale and policy cycle phase

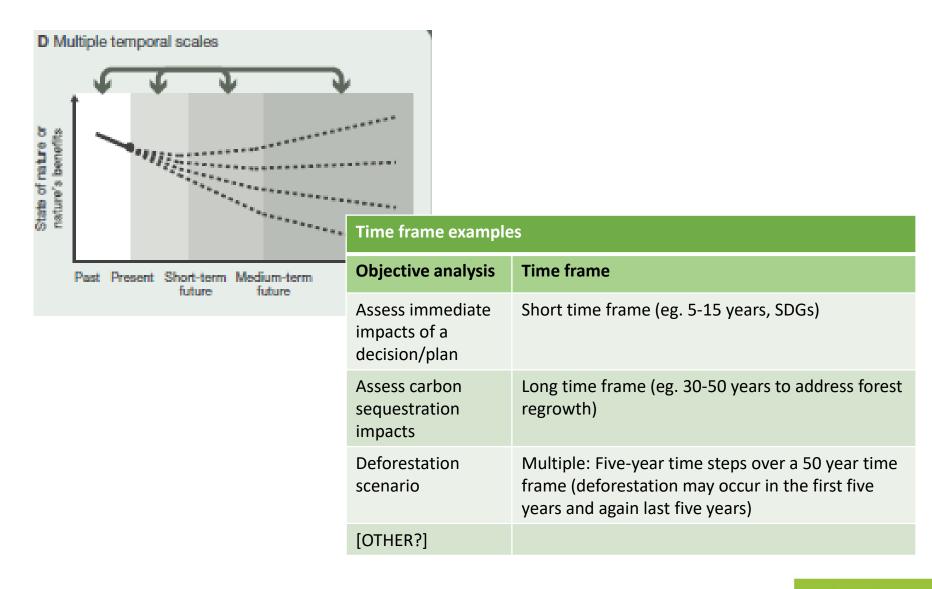
teebweb.org

Source: IPBES 2016


Scenario type	Summary	Relevance for policy making process	Role of drivers	Agri examples
EXPLORING alternative futures by using exploratory scenarios	Where might the future take us and what can we do to prepare? Based on plausible alternative futures built on extrapolations of past trends and new assumptions	Agenda setting: creates awareness of future policy challenges Assumes the absence of explicit policy intervention	Projections of indirect drivers and their effects on direct drivers	Diets: Mediterranean diet vs fast-food diet Agriculture systems: organic versus intensification
INTERVENTION Using target- seeking scenarios	Select the policy intervention that best meets goals Starts with a prescriptive vision of the future and then works backward in time to visualize different pathways of achieving the future target	 Policy design: Designs for real policies, plans and projects Policy prescriptive: identifies the conditions necessary to achieve the desired target 	Identification of driver values consistent with the desired target	Example objective/target: Food production self- sufficiency Toxin free nation Reaching SDG, Aichi target (scoping policies to achieve that goal)
INTERVENTION Policy screening using ex-ante assessment	What are desirable futures? Depicts the future effects of specific policy interventions	 Policy implementation: policy screening and impact assessment of alternative policy options before Implementation Stakeholders' concepts of desirable or undesirable futures 	Driver projections are used as reference for policy options	 Tax on soda, pesticides (results before and after application) Development plans including agri zoning configurations Criteria for payments for watershed services
POLICY EVALUATION using ex-post assessment	Looks backward to analyse the gap between policy objectives and actual policy results, after using counterfactual scenarios	Reactive policy Assessment Post hoc evaluation of policy effectiveness	Identification of drivers explaining discrepancies of outputs	(Not applied in TEEBAgriFood Country Implementation)

The spatial dimension

Depends on the TEEB study objective


 Scenario need to be relevant for the scale of the policy you want to inform, but this does not necessarily mean that the analysis needs to be at this scale

Combining multiple scales

Everything happens somewhere. Context is everything.

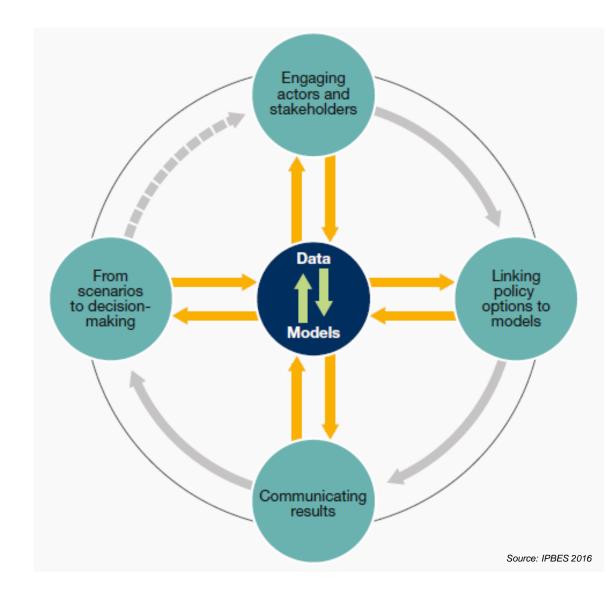
The time dimension

The number of scenario storylines

Important! Can affect which potential futures and policy options are considered, debated and realized

1: What's the point?

2: May not represent the complexity and nuance needed – often represent polarized extremes


3: Middle scenario may automatically be mistakenly interpreted as 'most likely' or 'preferred'

4: With even number of scenarios, stakeholders may be more likely to look at the full range of options

5 or more: sufficiently contrasting?

plans champions benefit adopted egitiment local-knowledge commitment involvement decision feel decision processes resource-intensive bias empowered

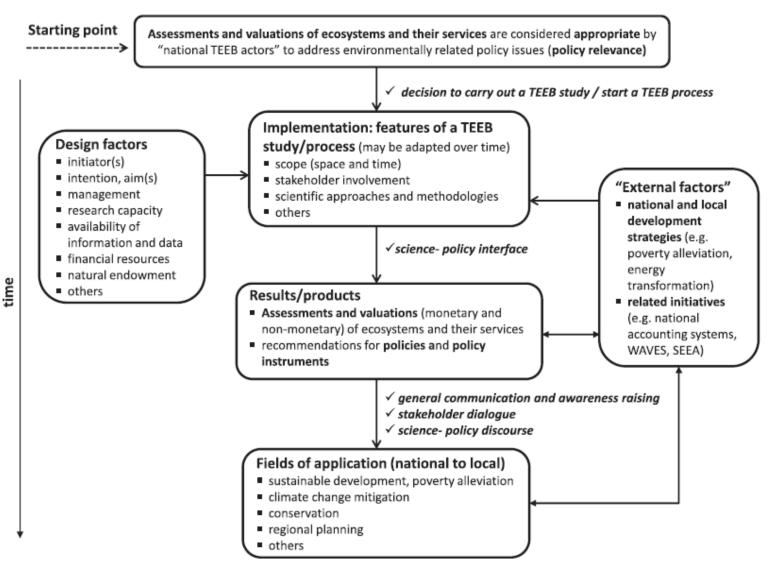
3. Translate qualitative storylines into driver scenarios

- Drivers are the foundation of scenarios
- Key questions about drivers when developing scenarios:
 - Which drivers, and how many should we consider explicitly?
 - What scale of drivers should we consider?
 - Drivers both within and beyond the decision makers' control?

Finding and accessing data for participatory scenario development

- Land use and land cover data: most scenarios begin by understanding the current situation - presenting this to stakeholders as they think about possible future changes
- <u>Historical data</u>: Develop a projection that predicts the expected future based on past trends
- Other data context dependent (linked to drivers of change)

Visualization options


Visualization type	Description	Example
	Clearly highlight trends or differences in scenarios or services	y y y y y y y y y y y y y y
Change maps	Visualize differences across scenarios; highlight drivers of change	No SLR by 2050 Relative exposure to coastal storms for 3 SLR scenarios
Rank across multiple services	Summarize top 20% of ecosystem services across a land or seascape	Water yield Total ES provision x 1 Sediment retention x 2 D Top 20% Bottom 20%
Overlay multiple visuals Source: Natural Capital Pro	Combine two visualization types (e.g. bar chart and scenario maps) to communicate data relationships	CURRENT CONSERVATION INFORMED MANAGEMENT DEVELOPMENT LOBSTER FISHERES 000000000000000000000000000000000000

Visualization options (continued)

Visualization	Description	Example
	Highlight a "serviceshed" which is a specific area that provides a service to a group of people (e.g. aggregate water purification services by watershed or pollination services by foraging range)	
Interactive maps/ animations	Allow viewers to interact with GIS data and other information through a standard web browser; users can zoom in to select areas and overlay different layers; no GIS is required.	ABOUT DATA STORIES USER GUIDE SUPPORT Select country/region Select country/region Apply Aichi Biodiversity Target 5 Alchi Biodiversity Target 12 Alchi Biodiversity Target 12 Alchi Biodiversity Target 12 Alchi Biodiversity Target 12 Alchi Biodiversity Target 13 Alchi Biodiversity Target 12 Alchi Biodiversity Target 13 Alchi Biodiversity Target 15 Alchi Biodiversity Target 16

https://www.mapx.org/

TEEB Implementation: managing the science-policy interface

Source: Bettina Hedden-Dunkhorst, Leon Braat, Heidi Wittmer (2015) TEEB Emerging at the country level: challenges and opportunities, Elsevier, Ecosystem Services 14 37–44

TEEB 6 step approach

STEP 1: Refine the objectives of a TEEB Country Study by specifying and agreeing on the key policy issues with stakeholders

STEP 2: Identify the most relevant ecosystem services

STEP 3: Define information needs & select appropriate methods

STEP 4: Assess and value ecosystem services

STEP 5: Identify and outline the pros and cons of policy options, including distributional impacts

STEP 6: Review, refine and report – Theory of Change

Scenario development steps

iterative approach in which scenarios are revised based on feedback from decision makers

Select the right scenario approach

Develop scenario storylines

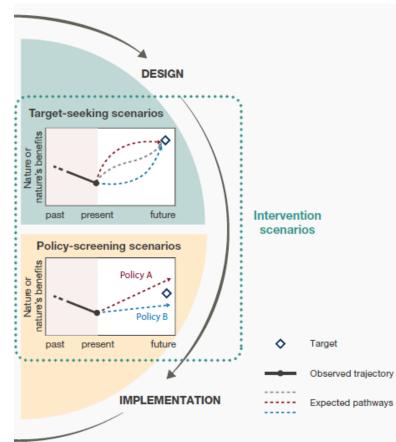
Create scenario maps: how ecosystem service provisioning alters tomorrow compared to today

Scenario modeling analysis of marginal change over time

Use results

comparative change of ecosystem services under different scenarios

<u>Group exercise</u>: Scenario storyline development by applying TEEB approach


1. Identify policy entry point

<u>Policy design – target seeking scenario</u>: Identify a policy target/goal that your country has set in terms of agriculture and food systems

<u>Policy implementation – policy screening scenario:</u> Identify alternative policy options around pressing agriculture and food policy concerns that are not yet under implementation

2. Develop scenario storyline

- Select one of the above policy entry points (or a combination), and refine scenario storyline with a number of scenario storylines
- Which drivers, and how many should we consider explicitly when developing scenario?
- What is the spatial and time dimension of your scenario?

Resources

TEEBAgriFood Foundations - chapter 7-8 methodology and framework application: http://teebweb.org/agrifood/scientific-andeconomic-foundations-report/

Previous TEEB Country Studies: http://www.teebweb.org/areas-of-work/teebcountry-studies/

Scenario hub Natural Capital Project: http://scenariohub.net/about

IPBES scenarios and models: https://www.ipbes.net/assessmentreports/scenarios

Thank you

Come and look for us at teebweb.org

Chalet in mountain ecosystem in Switzerland, credit: Olivier Rouselle